Vitamin-C for Metastock
Version 1.0.1

Vitamin-C

For Traders using
Metastock® Ver 7,8,9 and 10.

L

Advancing the Art of Trading with Science.

User Guide for Vitamin-C for Metastock®

Version 1.0.1 Build 2 - Final Release
Last Update 13 September 2009

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 1
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Contents

CONTENTS «eveeeccssssssecsssssssesssassssssssssssssssssssss 2

DISCLAIMER .eccicciesannecsssssssesssssasssssssssssssssssssasssssasssssssssssssssssssssssssasssssssssssssssssasssssssassssssssasss O

COPYRIGHT AND LICENSING AGREEMENT ...ccccccesssnsrccssssssessass 7
Trademarks 8
ACKNOWLEDGEMENTS . .cc0cceeessssess 9
VITAMIN-C FEATURE SUMMARY .ccuveeeccssssssecssssnssesssssasssssssassssssssassssssssssssssssasssssssaassssssas L0
INTRODUCTION .ccuueeerecsssssssesssass 12
The problem 13
Why the MetaStock Formula Language has limitations. 13
Trying to code simple systems using the MSFL 15

How MetaStock Communicates with Vitamin-C 16
Calling script files from your MetaStock code 16
Anatomy of a Vitamin-C function Call...........cccoocueririiiiiiiiiiiiieeeeeeeee et 16

O Example of using CallScript with No User Array Arguments..

O Examples of using CallScript with 1 User Array Arguments18

0 Example of using CallScript with 3 User Array ATGUMENTSc.ceotrvrerueuemeriririeieteiecreeeeseeeseeseeseseeseseeeeees 18

Your First Step teeeesseesstesstesatesatesatesatesate st e bt b e bt e RS e b e e bt s RS SRR SRR SRR RS bR b RS bR S bR e b0 00 19
Coding simple systems using the ‘Vitamin-C’ language 19
EEXETCISE .. nvuteneetiete ettt ettt ettt ettt ettt s e h e bt et et et en e e st e bt eb e ket e n e e et e bt beee e te b et et eneeneeneetetens 23

A Closer look 23
What happens if you make a mistake? 25
Detecting coding errors before you run the code-script. 25
Installing the Free Compiler On YOUT SYSTEIMcc..ivtirieriirietieiieieeiieiesteeeesteetesteetesaeeeesbesseensesneenseens 25

RUNNING A SYNLAX CHECK ..evviuiieiieiiiiieieeiete ettt ettt s te et st essesteesbesaeensessessseseensensanns 25
Correcting coding errors at runtime 27
Auto Save feature. 28

A Brief Introduction to C++ 29
Predefined Variables and Functions 30
Predefined VariabIes.c.ooiiiiiiieeee ettt ettt ettt eene 30

Vitamin-C SPECific fUNCLIONScc.eirtiriieiiitiiiert ettt ettt ettt sbeesbe et e nee et 30

Predefined Array Variables..........cocuoiiiiiiiiiiinieeieieetee ettt sttt sttt et 31

Your Second Step 32
EEXEICISE .ttt ettt ettt h et h et e bt e a e bt st e b e e h b bt h b e bt e bt e bt et e he e st e bt et enteene 34

Your Third Step. .. w35
Corollary 40
Exercise 42
Your Fourth Step 43
Getting a little bit more serious ! 43
Coding a Time Stop 43
Creating a MetaStock Time StOp EXPEIT ..c.eeiviriiiriiiieieiieieseeeieeree ettt 47

Building a simple Profit Stop Indicator Using Vitamin-C 50
Spicing up the Profit Stop. 54
Handling the Short side of the Market 55
Building a Trailing Stop function with Vitamin-C 57
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 2

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

The TradeSim Trailing Stop Function Description 57
Trailing Stop Algorithm on the Long Sidecccoouiiiiiiiiiiiicieieeeee et 58
Trailing Stop Algorithm on the Short SIdec.ccoeviiviiiiiiiiiicce e 59
Running the Vitamin-C Trailing Stop code 61
EXETCISE ...ttt ettt ettt et e b bt bttt a bt b ettt h ettt eae et aen 62
Implementing Moving Averages with Vitamin-C 64
The Simple Moving Average (SMA) 65
IMPTOVING the SIMA ..ottt ettt b e et s bt et et s st e bt et enbeestenbeentente et 66
The Exponential Moving Average 68
Porting Code from other Charting Platforms to Vitamin-C 72
Example 1: Adaptive Moving Average (AMA) 72
Example 2: The Guppy Count back Line Trailing Stop Indicator 75
Multi Dimensional basic arrays in Vitamin-C 78
Basic Array Declarations 78
Single DImensional ATTAYSccueteiriririirieieieteerie sttt ettt ettt st et be e ebesaesaene 78
O Examples....cooveerennnne.
Two Dimensional Arrays. .
L0 EXAIMIPIES ettt b st h e bt s et h At s e bt e Rttt b et n et ettt ettt e s ee
Three DImMENSIONAl ATTAYSc.eeuieiteriieiertieterteeteteeteesteettetesteestesseesesseestesseessessesssesseensensesseesseesensenns 78
O Examples....coouennnen.
N-Dimension Arrays. .
L0 EXAIMIPIES .ttt b st a e b s A bt s e bt Rtttk b s e n ettt ettt e s e
Using basic arrays in Vitamin-C 79
2-D DaSIC aITAY EXAMPLEeveiuiiiieiiiitieiete ettt ettt ettt st s be ettt et sbe et be et e nte et 79
3-D basiC aITAY EXAMPLEceruiriiiiiriietieiierieete ettt ettt sttt e bt et e sttt e bt et esbe et e b saeente et 80
Using the Standard ‘C’ library from Vitamin-C 83
Transcendental Example 83
File 10 example 84
Using Vitamin-C with TradeSim 88
Method 1: Generating Entry and Exit Triggers using Vitamin-C 88
Method 2: Creating a Text Trade Database. 92
Using Vitamin-C with BullCharts 95
ADVANCED TOPICS.ccccicotssanrecssssaseecssssnsscsssassssssse 99
Using the Standard Template Library 99
L0 EXAMPIC Lottt 99
APPENDIX A couuviieccssareecssssssecsssssssesssssssssssssssssssssssssssssssssssssssasssssssssssssssssssssssssassssssssssssssss 101
A Brief Introduction to C/C++ 101
Adding Comments to your C-script 101
What Is a Variable? 101
StOring Data I MEIMOTYccvevuieieieeieitieterieetesieeteeteseeeeesteessesseessessesssesseessessessaesesssessesseenseesensenss 102
Allocating Storage for Variables.coeveirieiiiiieeeieeeee et .102
SIZE OF VATIADIES....c.eveviniieiiiciiecenetcc ettt .. 102
Signed and Unsigned INTEZETSccueeuirtiriiriiiieieeiieie ettt sttt ... 102
Volatile and Non-Volatile StOTaeccccceriririeriiiiiiiiiesicieieeee ettt e 103
Keywords 103
Fundamental Variable Types 103
Storage Classes
Declaring Variables
CASE SENSTHIVILY -.eueetitiititete ettt ettt ettt b et et et e st e st e bt s bt et e st et eneeseeneeseebesbensenes
Typical Program Forms
Statements

Anatomy of a function.
Program Flow Control
REIatioNal EXPIESSIONS. ...c..eiieiieieiieriieiestietesieetesteetesteesteseessessesseessesssessesseessesseessesseessessesssesseensenses

O A common pitfall

TRE 1 STALETIIENIL. ...ttt b et sttt b ettt e st e bt eab et e est e besaeentesaeentenes

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 3
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

The if...€1S€ STALCIMENL.......ccuiiiiiiiiiieiie ettt ettt ettt e et e e ete e e aeeeteeeabe e seeesseesaseeaseeesseenseanaseanns 108
The if...else...if...€1Se StAtEMENLcccviiiiieiieciie ettt ettt ettt e et e e veesaaeeveesaseenne 109
O Example 1.
O Example2.....
The ?: Operator.............

The switch Statement....

O Example 1.............

L0 EXAMPIE 2.ttt ettt

Logical Expressions
The Logical OR OPETALOT || ..ccveeuierieriietietieiertteteete ettt ettt sttt ettt e st e sttt eab et sbe e besaeentesaeeneenaes

The Logical AND Operator &&

The Logical NOT OPETAtor |c.covviiuieiieiieieiiieieeteetesteete st e et ete st etesteestenbesseetesseesesseenseseeensenns

Loops

THE £OT-100D 1ottt ettt ettt et et et e b e e ae et eeb e et e bt et e sbeebeententesaeennens
O Example....

The while loop....
O Example............

The do...while loop ...
D0 EXAIMPIE .ottt ettt ettt ettt s et s e s et et s et et e b et et a et s b b et ae et e s s et e ae st es et sesene e

The DIeak StAtCIMENLc.eviieietieiesieeierie ettt et et e et e et e b e steeaesseessesseessesseesseseassesesssensenssensessnensenses
O Example.....cccoenneen.

The continue statement

APPENDIX B auuciiiiiirnniicnissnnricssssnnncssssnsscsssssssessasssssssssssssss 119

General Forms of CallScript
CallScript (0 USEr aITAY AIZUITICIILS)e.verveeureeteerereeetenseetesseentesseessesseeneessesseensesneessesseensesseensesseessessens
CallScript1 (1 user array arguments)
CallScript2 (2 user array arguments)
CallScript3 (3 user array arguments)
CallScript4 (4 user array arguments)
CallScript5 (5 user array arguments)
CallScript6 (6 user array arguments)
CallScript7 (7 user array arguments)

APPENDIX Cuuerrierrrnnnecsssssnresssasssssssssssssss 122

The Array Class Type 122
Available Operators 122
Array Member Functions 123
Array Friend Functions 124

APPENDIX D accciiiiisvnnnicssssnnnecsssssnssssssssessasssssssssssssss 129

Installing the Free Borland C++ Compiler on your system 125

APPENDIX E couuviiiiiinnniccsssnnncssssnnnecsssssssessssssssssssssssesssssssssssssssssssssssssssssssssssssssassssssssssssssss 128

MetaStock Sample Indicator code 128
AdaPtiVe MOVING AVETAZE. ...c.eiviteieieuieteetteteet ettt ettt ettt e st eseeseeseesestesbeste e eneeseeseeteabeeeneeneeseasensenes
Exponential Moving Average
STMPIE MOVINZ AVETAZEeveentieiietieiiete ettt eete bttt et eate st set ettt et e s bt e be e bt et e sbeestesbeenbesbeeneenbeensensenne
GUPPY CBL ..ttt b bbb s bt et e e bt e st e s bt st e b e s et e bt et e beeabeaeas
2D-Array....cccceeveennen.
3D-Array....coceeveeenne.

STL string
Sinewave..........cco.....

REFERENCE LITERATURE ..vveeeecereeeeeccrseseeccssesessessassssessssssssssssssssssasssssssasssssssasssssssassssssse 132

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 4
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
General Reading and References 132
C/C++ Programming and Language Reference 132
Online C/C++ References 132
Cited TradeSim Documents 132
General References on Trading 132

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved
http://www.compuvision.com.au

Page 5

Vitamin-C for Metastock

Version 1.0.1

Disclaimer

In no event shall Compuvision Australia or its suppliers be liable for any damage either direct or indirect,
including, without limitation, damages for loss of business profits, business interruption, loss or business
information or other losses arising out of the use of or inability to use the software.

The results obtained from using this software are not indicative of, and have no bearing on, any results,
which may be attained in actual trading. Results of past performance are no guarantee of future
performance. It should not be assumed that you would experience results comparable to that reflected by
the results from this software. No assurance is given that you will not incur substantial losses, nor shall
Compuvision Australia Pty Ltd be held liable if losses are incurred.

Compuvision Australia Pty Ltd is not a licensed investment advisor and so the information and results
obtained by using this software is for educational purposes and of the nature of a general comment and
neither purports nor intends to be, specific trading advice. The information obtained from using this
software should not be considered as an offer or enticement to buy, sell or trade and is given without regard
to any particular person's investment objectives, financial situation and particular needs. This software is
not designed to replace your Licensed Financial Consultant or your Stockbroker. You should seek
appropriate advice from your broker, or licensed investment advisor, before taking any action.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 6
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Copyright and Licensing Agreement

Vitamin-C for Metastock is Copyright© 2000-2009 by Compuvision Australia Pty Ltd.
IMPORTANT - READ CAREFULLY

This license statement and limited warranty constitutes a legal agreement ("License Agreement") between
you ("Licensee", either as an individual or a single entity) and Compuvision Australia Pty Ltd ("Vendor"),
for the software product Vitamin-C for Metastock® ("Software") of which Compuvision Australia Pty Ltd
is the copyright holder.

BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU AGREE TO BE
BOUND BY ALL OF THE TERMS AND CONDITIONS OF THE LICENSE AGREEMENT.

Upon your acceptance of the terms and conditions of the License Agreement, Compuvision Australia Pty
Ltd grants you the right to use the Software in the manner provided below.

If you do not accept the terms and conditions of the License Agreement, you are to promptly delete each
and any copy of the Software from your computer(s).

This license agreement only applies to the software product "Vitamin-C for Metastock" and not to any
other product even if that product is similar to Vitamin-C for Metastock and has a similar name.

The Vendor reserves the right to license the same Software to other individuals or entities under a different
license agreement.

After accepting this license agreement, the Licensee is permitted to use the Software under the terms of this
agreement.

Under this license agreement, the Software can only be used by those persons or entities that have
purchased a license key. Payment information is available at
http://www.compuvision.com.au/PurchaseOnline.htm.

The Software is provided "as is". In no event shall Compuvision Australia Pty Ltd be liable for any
consequential, special, incidental or indirect damages of any kind arising out of the delivery, performance
or use of this Software, to the maximum extent permitted by applicable law. While the Software has been
developed with great care, it is not possible to warrant that the Software is error free. The Software is not
designed nor intended to be used in any activity that may cause personal injury, death or any other severe
damage or loss.

When errors are found in the Software, the Vendor will release a new version of the Software that may no
longer contains those errors a reasonable amount of time after the Vendor is given an accurate description
of those errors. Which amount of time is reasonable will depend on the complexity and severity of the
errors. The Vendor will mention the release at http://www.compuvision.com.au, at the Vendor's option,
directly contact the Licensee to announce the new release. The Licensee can then, at their option, upgrade
to the latest version or to continue to use the older version the Licensee already has. In the latter case, the
Licensee will no longer be entitled to technical support until the Licensee has upgraded to the latest
version.

The Vendor reserves the right to charge an upgrade fee in the case of major new enhancements or additions
to the Software. This major new version will then start a new version line, which will use version numbers
clearly distinguishable from the old version line. The Licensee has no obligation to upgrade to the new
version line.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 7
http://www.compuvision.com.au

http://www.compuvision.com.au/PurchaseOnline.htm
http://www.compuvision.com.au/

Vitamin-C for Metastock

Version 1.0.1

You must not attempt to reverse compile, modify, translate or disassemble the Software in whole or in part.
You must not run the Software under a debugger or similar tool allowing you to inspect the inner workings
of the Software.

The Software remains the exclusive property of the Vendor. Any Licensee, which fully complies with the
terms in this license agreement, may use it according to the terms of this license agreement. You must not
give copies of the Software or your license key to other persons or entities. If you have received a
download password or an URL with an embedded password for downloading the Software, you must keep
this password secret. You must also take reasonable steps to prevent any third party from copying the
software from one of your machines without your permission.

The Vendor reserves the right to revoke your license if you violate any or all of the terms of this license
agreement, without prior notice.

Trademarks

TradeSim® is a registered trademark of Compuvision Australia Pty Ltd.

Metastock® is a registered trademark of Equis International.

Microsoft Windows® is a registered trademark of Microsoft Corporation.

Microsoft Excel® is a registered trademark of Microsoft Corporation.

Word for Windows ® is a registered trademark of Microsoft Corporation.

TradeStation® is a registered trademark of Omega Research Corporation.

Cint and associated tools are owned by Agilent Technologies Japan Company.

CINT is developed by Masaharu Goto, who works for Agilent Technologies, Philippe Canal and Paul
Russo at Fermilab, and Leandro Franco, Diego Marcos, and Axel Naumann from CERN.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 8
http://www.compuvision.com.au

http://root.cern.ch/twiki/bin/view/ROOT/CINT
mailto:gotom@hanno.jp
http://fnal.gov/
http://cern.ch/

Vitamin-C for Metastock

Version 1.0.1

Acknowledgements

Vitamin-C for Metastock® is adapted from CINT which is a C/C++ interpreter aimed at processing C/C++
scripts. Scripts are programs performing specific tasks. Generally execution time is not critical, but rapid
development is. Using an interpreter the compile and link cycle is dramatically reduced facilitating rapid
development. CINT makes C/C++ programming enjoyable even for part-time programmers.

CINT is written in C++ itself (slightly less than 400,000 lines of code). It is used in production by several
companies in the banking, integrated devices, and even gaming environment, and of course by ROOT,
making it the default interpreter for a large number of high energy physicists all over the world.

CINT covers most of ANSI C and ISO C++. Support for K&R-C, ANSI-C, ANSI-C++

CINT has 80-90% coverage on K&R-C, ANSI-C and C++ language constructs. (Multiple inheritance,
virtual function, function overloading, operator overloading, default parameter, template, etc..) Cint is
solid enough to interpret its own source code. CINT is not aimed to be a 100% ANSI/ISO compliant C++
language processor. It rather is a portable script language environment which is close enough to the
standard C++.

CINT is developed by Masaharu Goto, who works for Agilent Technologies, Philippe Canal and Paul
Russo at Fermilab, and Leandro Franco, Diego Marcos, and Axel Naumann from CERN.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 9
http://www.compuvision.com.au

http://root.cern.ch/twiki/bin/view/ROOT/CINT
http://root.cern.ch/twiki/bin/view/ROOT/CINT
http://root.cern.ch/twiki/bin/view/ROOT/CINT
http://root.cern.ch/twiki/bin/view/ROOT/CINT
http://root.cern.ch/twiki/bin/view/ROOT/CINT
http://root.cern.ch/twiki/bin/view/ROOT/CINT
http://root.cern.ch/twiki/bin/view/ROOT/CINT
mailto:gotom@hanno.jp
http://fnal.gov/
http://cern.ch/

Vitamin-C for Metastock

Version 1.0.1

Vitamin-C Feature Summary

v Implement functions not provided with MetaStock and/or which require the MetaStock
Developers Kit.

v Perform complex calculations on price and volume data that can’t be performed using the

MetaStock Formula Language (MSFL).

Provide multiple functions in a single script.

Create functions that can be used by Custom Indicators, Systems Tests, Explorations and Experts.

Distribute your Vitamin-C scripts to other users who also have Vitamin-C. Vitamin-C scripts are

just standard text files that can be edited using any text editor or the fully featured context

sensitive editor built into the Vitamin-C Integrated Development Environment (IDE).

v" Enhance and extend the MetaStock Formula Language using structured programming constructs

such as looping, for, while, do-while, break, continue, switch-case, pointers, structure and class

objects, function calls etc.

Simple Interface to MetaStock Formula Language (MSFL) and MetaStock Interface.

No need to migrate to a new charting package. Re use your existing MetaStock code and enhance

it using industry standard C/C++ language constructs.

v No need for cryptic MSFL code such as latches, to code simple functions such as protective stops,
profit stops, time stops, trailing stops, pattern matching and recognition, wave count etc. Code it
the way it makes sense !!

v Full programming access to most ANSI-C and C++ features although in most cases the simple C
language constructs will suffice.

v' C/C++ code allows the ability to easily code and reference a particular value(s) in a MetaStock
data array for the purpose of writing stop functions in a straightforward way.

v" Advanced Array class allows encapsulation of existing MetaStock price and data arrays for an
intuitive and streamlined program interface. Both array indexing and array manipulation are
available to the programmer and can be used independently or together to get the most flexibility.

v Hand optimized machine code, which takes advantage of the on-chip data caches as well as the
CPU and Numeric Processor instruction set for super fast array processing ! In fact much faster
than MetaStock !!

v Full access to ANSI compatible C library. If you need file IO operations then no problems;
Vitamin-C has it all and more and there is no need to worry about which include files to use !
Access to the libraries are transparent to the user !

v Streamlined and transparent interface to MetaStock with full-featured Integrated Development
Environment (IDE) and unlimited context sensitive editor, which can be resized and is not limited
in any way.

v Write your own plug-in code without the hassle and added expense of using the MetaStock
Developers Kit (MDK). There is no need for the MDK and no need for a qualification process in
order to purchase or use Vitamin-C !!

v Because Vitamin-C script is fully interpreted there is no need to learn the idiosyncrasies of C
compilers and linkers along with the complex interface structure used in the MDK.

v Run unlimited amounts of code.

v Full portability guaranteed. Unlike pseudo ‘C’ like script code used in other charting packages, the
industry standard C code used in Vitamin-C allows code to be re-compiled later on for further
performance and speed enhancements if need be.

v" Modular programming interface allows libraries of functions to be easily compartmentalized and

catalogued.

Structured programming in C and C++ forces sensible programming approach.

No need to deal with complex external formula library interface in the MDK, which is only really

usable by experienced and seasoned programmers.

v" Save time and money ! There is no need to change to another charting package and spend time and
money learning another formula language. Use your existing investment in time building existing
MSFL code and enhance it using Vitamin-C. Vitamin-C brings MetaStock into the 21st Century !

ANANEN

AN

AN

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 10
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

v Vitamin-C will form the de-facto standard for programming amongst other MetaStock users so it
will be possible to easily share Vitamin-C scripts amongst your colleagues. Even if your forte is
not programming you can still use scripts written by others just as you currently do with other
MetaStock code.

v 12 months free updates from date of purchase !

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 11
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Introduction

I would love a dollar for every time someone asked me how to write some simple MetaStock code to
reference a particular price at a particular bar. This information is usually needed for the purposes of
building a simple protective or profit stop trading system. In the end this functionality would usually be
hard coded into the TradeSim formula library that we provide with TradeSim. This had to be done at the
lower level using the MetaStock Developers Kit (MDK) using the C language. Having this functionality
built into the TradeSim formula library plug-in, allowed people to easily back test their systems using
TradeSim but made it difficult to use this functionality outside of the TradeSim environment.

What was needed was the ability to easily code these things in a user-friendly environment without
requiring a University computer science degree and years of experience. This formed the basis of the need
for developing a new product, which would sit beside MetaStock and would allow people to easily code
external functions that traditionally would require the MDK. It would also transcend the limitations
imposed by the MetaStock Formula Language(MSFL) without resorting to the obfuscation and
complexities of the MetaStock Developer's Kit ! The result is Vitamin-C for MetaStock ! I hope you have
as much fun with it as I have in developing it. It’s been a long time coming but it is finally here.

Please carefully read through this User Guide and tryout the many examples that we have provided.
Hopefully by the end of it you will be able to code your own systems without even touching the MDK. At
the end of the User Guide you will find a brief introduction to C/C++ as well as some good references on
the C/C++ language, which you will find useful if you have never had any experience programming in this
great language before.

Throughout the manual you will notice that I refer to C and C++ as the one indivisible language.
Historically the C language standard was established first and then later C++ built on C with lots of brand
new concepts including object orientated programming. In essence C should be looked on as a subset of
C++. It is often stated that it is more beneficial for first time programmers wanting to learn C++ not to have
any prior experience with C but if you have then don’t despair as I had to and I ended up writing TradeSim
with it ©

Regards,
David Samborsky
BE Comms Electronics, RMIT

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 12
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

The problem

Anyone who has used Metastock for a long period of time and have hand coded indicators, experts and
explorations using the Metastock Formula Language (MSFL) will have come across some of the following
problems:

How do I code a protective stop using the MSFL ?

How do I code a profit stop using the MSFL ?

How do I code a time stop using the MSFL ?

How do I reference an entry point ?

How do I reference the price at entry ?

How can I iterate through a series of price values ?

How can I process elements in an Nth dimension array ?
How can I code a pattern matching routine ?

While conceptually simple in most structured languages, unfortunately it is almost impossible to do simply
using the MSFL without resorting to some very contorted coding practises, which they are prone to error
and are also computationally inefficient.

To understand why this is the case you need to understand how Metastock processes its language
constructs.

Why the MetaStock Formula Language has limitations.

On first glance the MSFL appears to be a comprehensive language, rich in arithmetic and logical operators
as well as formulas which operate on an array of values, but on deeper inspection and usually after one has
used it for long enough its limitations become apparent.

In the MSFL each variable and formula function is treated as an array or series of values rather than a
single entity as in most procedural languages such as Pascal and C++. Because of this MetaStock always
interprets a whole array of data rather than a single entity so that from a programmer’s perspective, access
to a particular element at a certain date or bar is not possible. However deep in the internals, which are
invisible or transparent to the user, and at the machine level only one value of the array can be processed at
any one time so the MSFL interface gives the impression or illusion that all processing of an array of data
is carried out simultaneously. For all intents and purposes the user should see it like this.

As an example the closing price for two consecutive weeks of data is shown below
R 3 te,

0 1 2 3 4 > 5 6 7 8 9
$10.21 $10.31 $10.45 $10.15 $9.87 E $9.91 |* $9.89 $10.01 $10.05 $10.10
Mon Tue Wed Thu Fri 4 M™on [Tue Wed Thu Fri

*
. *
Cypunt®

When referencing the closing price in the MSFL which value does CLOSE or C refer to? The answer is, all
of them and not one particular value !!

To access the closing price for the second Monday how would you do this using the MSFL? Actually it’s
not very easy ! The MSFL does not provide any native language constructs to do this easily.

In the C++ language you would do this by indexing an array variable with an index that corresponds to the
appropriate position in the array. For example if our closing price array has been previously declared we

can then access any individual value by indexing it;

DesiredClosingPrice = Close[index];

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 13
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

In Vitamin-C, a special Array class with overloaded functions is used to encapsulate the raw price data
stored within the MetaStock environment. This provides an intuitive and yet very powerful interface, which
can be used to retrieve individual values from an array. This allows out of bounds checking of the array
index but for all intents and purposes the user has direct access to each element of the array.

Because C++ uses zero-based subscripting for array variables an index of 0 refers to the first value of the
array and an index of 1 refers to the second value in the array and so on. In the following example the

DesiredClosingPrice variable is set to the 6™ element of the closing price array variable.

DesiredClosingPrice = Closel[5];

In Vitamin-C, automatic checking is done to filter out illegal index values, which would
otherwise cause illegal memory access problems and potential program instability issues.

For example the following direct array access would be illegal on an array with 1000
elements:

-

o,

" DesiredClosingPrice = Close[-1];
DesiredClosingPrice = Close[1011];

However in Vitamin-C if the index is out of bounds no problems will occur. In fact when
the index value is out of bounds the array will just return return a zero value and an error
will be reported to the Report Log.

The MSFL does provide mechanisms to manipulate the values contained in an array similar to other
languages. It provides both arithmetic and logical operators to do this but unlike other languages and from a
users perspective it always operates on all the values in the array at once and not on any element in
isolation. For example if we were to add the value 2 to the closing price we could do this in the MSFL
using the following code:

NewClose := Close + 2;

What exactly happens behind close doors and deep in the internals of the MetaStock environment can be
better seen by taking the example above and disseminating it as in the following diagram:

Index — 0 1 2 3 4 5 6 7 8 9
Close 1021 | 1031 | 1045 | 1015 | 987 | 991 | 989 | 10.01 | 10.05 | 10.10
+ + + + + + + + + + +
2 [2 [2 | 2 | 2 [2 [2 [2 [2 [2 |
! | ! | ! ! | ! | ! J
NewClose | 1551 | 1231 | 1245 | 1245 | 11.87 | 11.91 | 11.89 | 12.01 | 12.05 | 12.10
=Close + 2

Each index corresponds to one value of the closing price data. A value of 2 is added to this closing price
and the new value is stored in the ‘NewClose’ array for that particular index. This process is repeated until
all of the closing price data has been processed and stored in the new array. There is no chance for the
programmer to intervene in this process.

To do this in the C++ language you would have to iterate through all of the values in the ‘Close’ array and
add 2 to each value. It would look something like this:

for (int index = 0; index < BarCount; index++)
NewClose[index] = Close[index] + 2;

This is what is happening at a lower level in the Metastock environment, however the user never gets to see
this. The MSFL coding appears to provide a simpler solution since it automatically encapsulates the lower
level iterative loop needed to add to each value in the Close price array. However this simplicity comes at

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 14
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

the cost of flexibility, which limits the scope of the language since in a lot of cases, access to the index
variable or a particular element of the array during the iterative process, is imperative in order to do some
really useful things.

| Vitamin-C also allows operation on arrays just like the MSFL but it also allows access to
'I:;'I'I each element in the array.

Trying to code simple systems using the MSFL

So what if you can’t access an individual element in the price array ! Why does this stop you from creating
a simple profit or time stop etc ? To understand this dilemma let us try to construct a profit stop using the
MSFL.

For the sake of the argument lets artificially force entry on the first day of every month. i.e.,

EntryTrigger := dayofmonth()=1; { force entry on the first day of every month }

We will enter at the opening price. i.e.,

EntryPrice := Open;

We will also exit at the closing price. i.e.,

ExitPrice := Close;

Now all we need now is a mechanism that will provide the ExitTrigger when the profit gain exceeds a
certain amount. As part of our example, lets force the trade to exit when the profit gain exceeds 50% on the
long side. Most people will try and write something like this:

ExitTrigger:=(ExitPrice - EntryPrice) /EntryPrice * 100 >= 50;

However this won’t work because what actually does the EntryPrice refer to ? We know it should be the
EntryPrice at the point of entry, or in this case the first day of the month but in this case the EntryPrice is
just giving us the opening price on the same bar as ExitPrice, so we are just comparing the opening and
closing price on the same bar to see if there has been a 50% increase and ExitTrigger is essentially an array
of values where each value in the array represents whether or not the profit gain exceeds 50%.

To calculate the Profit gain we need to know the actual entry price at the point of entry i.e., EntryPrice
when EntryTrigger = 1. To do this we use the ValueWhen() function that allows us to reference a specific
value when a certain condition is met i.e.,

ActualEntryPrice := valuewhen (l,EntryTrigger,EntryPrice) ;

Now we can code the ExitTrigger using the following code;

ExitTrigger := (ExitPrice - ActualEntryPrice)/ActualEntryPrice > 0.5;

Although not obvious this will not work correctly. The reason why is that if the profit gain is not detected
by the time a new EntryTrigger comes along (every Monday in our case) then the ActualEntryPrice point
will then change to the next EntryTrigger price point (or next month) and thus the profit gain calculation

will become invalid. This is why the MSFL is not designed to handle such coding techniques in a simple

way since it does not allow the user access to the internal mechanism that is used by MetaStock to iterate

through the array of values.

In the next sections we discuss how we can overcome these limitations using Vitamin-C for MetaStock.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 15
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

How MetaStock Communicates with Vitamin-C

Before we start coding stuff using Vitamin-C it is important to familiarize yourself with how MetaStock
communicates with Vitamin-C. The Vitamin-C engine is essentially an external MeyaStock plug-in DLL
(called VitaminC.dll) that sits in the MetaStock External Formula directory along with any other MetaStock
plug-ins. When MetaStock is started, the initialization routines in the DLL load up the Vitamin-C
Integrated Development Environment (IDE), which is automatically minimized to the system tray.
Provided that you have registered Vitamin-C and activated it with a license key then you should be able see
the Vitamin-C icon in the system tray similar to the following:

-n
0‘ .0
* E'S

| B3V Z05 85 et TRPO 229Pm

ol
®ans®

When the VitaminC.dll plug-in is loaded and communicating with MetaStock the DLL also communicates
with the Vitamin-C IDE through a Windows messaging process. This allows seamless integration of the
IDE with MetaStock as though Vitamin-C was built into MetaStock.

MetaStock(exe) Application

Indicator, VitaminC(dll)
J\ Expert,

Exploration, (CallScriptX
‘l/ System Tester \,—‘/ External Function)

Windows Messaging

|
v

Integrated Development
Environment (IDE)

Security
Data

Vitamin-C
Script file

VitaminC(exe) Application

Calling script files from your MetaStock code

There is essentially one type of function (and its variants) used to call the Vitamin-C script from your
MetaStock code. The number of user array arguments supplied will determine which variant is used.
Implicit with each call to the CallScriptX function is access to predefined data arrays such as Open, Close,
High, Low, Volume, Date, Time etc. The additional UserArray parameters are available for any user-
defined arrays.

The Vitamin-C engine does not have access to the whole library of MetaStock functions
F.o so if you need access to any function or indicator you should first create this using the
f " K'»\ MetaStock formula language and pass it as an argument to one of the functions. We
L purposely created Vitamin-C to be like this because we did not see any point in
duplicating the entire MetaStock formula library again.

Anatomy of a Vitamin-C function call.

The MetaStock code used to call the external Vitamin-C script takes the following form:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 16
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

ExtFml ("VitaminC.CallScriptX",
“SCRIPT_ FILENAME”,
“FUNC_NAME ARGUMENTS”,

UserArrayArgl, ..,UserArrayArg7 { Optional User Supplied Array(s) }

i . . .
o] " Please see Appendix B for the complete syntax for all variations of the CallScriptX
L .
LI function.
Parameter Required Argr;r;:nt Description
1 “VitaminC.CallScriptX” Yes String The first parameter in the call specifies the

DLL and name of DLL in the usual MetaStock
convention for calling External DLL function
libraries. The X refers to the number of user
array arguments passed. If X is not specified
then no arguments are passed to the function
otherwise X can be anything from 1 to 7,
which specifies the number of user
arguments that the function accepts.

2 “SCRIPT_FILENAME” Yes String Name of script file enclosed by quotes. If no
path is given then the default path
‘\VitaminCScript’ is used.

Examples:

"MovingAverage.c"

"simple.c"

3 “FUNC_NAME_AND_ARGUMENTS” Yes String This string defines the function name and
arguments. If the function accepts constant
valued arguments than these will be included
in the string separated by commas and
enclosed by left and right parentheses pair. If
the function returns a value then this value
will be ignored by MetaStock. All values
returned to MetaStock should be written to
the Result Array. Contrary to the limits on the
number of arguments that can be passed to
an external DLL there is no limit to the
number of constant arguments passed to the
function C-Script since it just equates to one
string argument. If a char string is passed as
an argument to a char pointer parameter in a
Script function then to avoid conflicts with the
double quotation marks used to define the
string argument then a character string
should be enclosed with single quotation
marks (the one next to the left of the ‘1’ key
on your key board)

Examples of Vitamin-C script function name
and argument:

"EMA (10) "
"CBLTrailingStop(3)"
"TrailingStop (BAND, LONG) "
"SetStop ('AMP,10.67)"

4.7 | UserArrayArg1... UserArrayArg7 Optional | MetaStock | Standard MetaStock formula language data
Array array. Anything that equates to an array can
be used as a UserArray argument.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 17
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Examples of User Array Arguments:
Mov (C,10,E)

(Open+Close) /2

Ref (Cross (MACD () ,Mov (MACD() ,9,E))
r_l)

O Example of using CallScript with No User Array Arguments

ExtFml ("VitaminC.CallScript",
"GuppyCBL.c",
"CBLTrailingStop(3)") ;

O Examples of using CallScript with 1 User Array Arguments

EncodedTrigger:=ExtFml("VitaminC.CallScriptl",
"ProfitStop.c",
"ProfitStop(5)",

EntryTrigger) ;

EncodedTrigger:=ExtFml("VitaminC.CallScriptl",

"TimeStop.c",

"TimeStop (30, 'AMP')", { string character array wrapped in single quotes }
EntryTrigger) ;

Q Example of using CallScript with 3 User Array Arguments

ExtFml ("VitaminC.CallScript3",
"TrailingStop.c",
"TrailingStop (BAND, SHORT) ",
3*ATR(10),

CLOSE,

HIGH) ;

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 18
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Your First Step

Coding simple systems using the ‘Vitamin-C’ language

How would we code a simple time stop using the ‘Vitamin-C’ language ? Before we get to addressing this
issue lets start with a simple example of the process of using Vitamin-C to write some C++ code that can be
accessed from MetaStock. We will start with something that is pretty useless and superfluous just to
illustrate the process of creating a Vitamin-C script and calling it from within the MetaStock environment
as well as demonstrating the use of subscripting an array variable. You will see that the process of creating
and running C++ compatible script from MetaStock is quite seamless as though MetaStock was running the
code itself.

We will now create a function called ‘Demo()’ that returns the values of the Closing price array using
array subscripting in a for-loop. If you don’t know what a for-loop is or have not programmed in the C++
language before then don’t worry, as we will discuss these things in depth later on. For now just follow the

instructions.

If you have installed Vitamin-C Integrated Development Environment (IDE) then it should automatically
start when MetaStock is started or it can be started from its desktop icon or from the start menu.

Once the Vitamin-C IDE is running, to create and edit a new Vitamin-C script click on:

File — Open C Script

® Vitamin-C for MetaStock (Registered with 14 days remaining)

|Pre-Release Beta Version 1.0.0 Build 1 %

When the ‘Open C-Script’ Dialog box appears then click on Cancel:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 19
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

=10l x]

4 vitamin-C for MetaStock (Registered with 14 days remaining)
File Edit Search Advanced Tools Window Help

ledas|=s o

ir—ﬁ Editor- c\VitaminCScript\Untitled.c

Open Vitamin C-script 2 x|

Look in: |) VitaminCScrint x| = ® ck E-

EI Simple Example.c Ej MyFuncs.c

[Z) untitled.c
E] Maving Average Original.c
r:%] DebugTest.c

[Z] sdfedsdf.c
Ej Moving Average.c
IE] MyFuncs Original.c

IE] script.c
() Indude

[£] Profitstop.c
r:E_] TimeStop.c

File name: ||

Files of type: | files (")

|Pre-Release Beta Version 1.0.0 Build 1 i

Now you can start editing!

Type the following code below into the editor, as you would using NotePad or Word etc. You can also
copy and paste the code directly into the editor if you want to be sure that you have copied it correctly ! To
do this, highlight the code below in yellow background and copy it to the clipboard using the ‘Ctr]’+’C’
keys or use the ‘Copy’ command from the edit menu. Once you have done this paste it back into the
Vitamin-C edit window using ‘Ctrl’+’P’ or the Paste command from the edit menu. Don’t worry if you are
not familiar with the C++ language as we will cover this more in-depth later on.

void Demo ()

{
for (int i=0;i<BarCount;i++)
Result[i]=Close[i];
}

Because the editor in Vitamin-C IDE is context sensitive it will highlight different code contexts in
different colours. Unlike the bland old MetaStock editor, which shows everything in black and white in a
small window that can’t be resized, the Vitamin-C editor highlights different contexts in different colors
and does not restrict editing in a small window.

If you have copied the code segment above into the Vitamin-C editor it should something look like the
following.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved
http://www.compuvision.com.au

Page 20

Vitamin-C for Metastock

Version 1.0.1
e Editor- C:\VitaminCScript\Untitled.c* -0l =l
1 vwoid Demno () AI
z {
3 for {int i=0;i<BarCount;i++)
4 Result[i]=Clo=e[i]:
5}
[

Now you should save this code into a file, which we will call ‘simple.c’ rather than use the default
‘Untitled.c’ filename.

To do this click on the following menu sequence:

File — Save As

4 Vitamin-C for MetaStock (Registered with 14 days remaining) o] 4]

File Edit Search Advanced Tools Window Help

O new ci\WitaminCSeriptiUntitied, c=
L=~ Open Called from script file:- |c:§h"|izminCSm'gtﬂm[je.c
Open last executed script (Simple.c)
) Recent Files 3 =10l x|

u Save
Boffsavens

B it

|Pre-Release Beta Version 1.0.0 Build 1 4

Type ‘Simple.c’ in the Filename edit box and then click ‘Save’

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 21
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
saveas 21|
Savein: Ib WitaminC Script j = |‘=_3F v
Igj Simple Example.c I?I MyFuncs.c
E] untitled.c [Z] sdfedsdf.c
Igj Maving Average Original.c I?I Moving Average.c
E’] DebugTest.c |':=j MyFuncs Original. c
Ej ProfitStop.c F?] script.c
Igj TimeStop.c IChIndude
File name: ISimpIelc Save
Save as type: IC files (*.c) j Cancel |
o

Now we will create an indicator in MetaStock, which calls this function and overlay this indicator on a
chart.

Run MetaStock, and create an indicator with the following code and call it ‘First Step’. You can also copy
and paste the formula if you like.

ExtFml ("VitaminC.CallScript",
"Simple.c", { name of script file }

"Demo () ") ; { function name and parameters }

Vitamin-C - First Step Properties x|

ColorfSt'_.'Iel Horizortal Lines Formula |

Mame: I‘-.-'"rtamin-C - First Step W Dizplay In QuickList

Fomula: |ExtFnl{ "VitaminC.CallScript". =]
"Simple. ", £ name of script file @
"Denoi ") ; { function name and paramnsters }

[~
ﬂ Functions... |

-

OKil Cancel | Aopy | Hep |

Load up a chart and now add the indicator to the chart. What do you see ?

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 22
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

ol
Fie Edit View Insert Format Tools Window Help =&l

J_D = H|§ Iﬁ| & E| Ll ‘-&:} @”Vllamm-E-F\rstStep j‘ @ 3‘ i t 5 34 g‘k‘_}
f—
[k 11 SRR
i 10 - - 10
N -
_' 8 F 8
| 74 o7
B G] r i
5
- 4

INPN

7«%;“”Héwfﬁhﬂﬂﬁwwnpwiﬂ¢ﬁ 3 10

j7 24 %f - 9
& 8] [‘%{L‘h :"‘/\W“’M. i Fo°
i W, T L
7] iy \Mﬂf‘w‘twwm] 7
el 6 ! ! J%ﬂ 8
5] WWM #\‘#W L 5
] v Foo
m Volume o =]
25000 - - 25000
20000 - - 20000
15000 - = 15000
10000 - = 10000
seoog)0 =1500) 00
2007 Aug |Sep |Oct |Nov [Dec (2008 Mar |[Apr |May |Jun |Jul |Aug |Sep |Dct [Mov |Dec |2009 Mar |[Apr |May [Ju
K| Hezp|t+ae|4ra
I = <l || BEREEEG |2 s @ EES
J lAMF' || j”lntarhankFX j| Tads | |
For Help, press F1 [[[zoa [§[4

The indicator should be displaying the closing price of the underlying security.

Exercise

As an exercise expand the display and check to see whether the indicator is actually showing the closing
price.

A Closer look
Now how exactly does this bit of C++ code work ??

void Demo ()

{
for (int 1=0;i<BarCount;i++)
Result[i]=Close[i];
}

The first line consists of the function declaration and start of the function block. The ‘void’ word tells us
that when this function is called it does not return a value of any kind to calling program. Next to the type
of return value is the name of the function (in our case it is called ‘Demo’) followed by opening and closing
parenthesis which tells us about any parameters that the function needs which in this case is none. The body
of code that defines what the function does is always enclosed within braces.

In MetaStock braces are used to denote comments that don’t do anything. In *C/C++’
L) 1._"".' braces are used to delineate blocks of code. An opening brace should always be paired up
=) with a closing brace.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 23
http://www.compuvision.com.au

Vitamin-C for Metastock
Version 1.0.1

The next two lines of the code form the body of the function. This basically defines what the function will
do. The first line of the body is a for-loop which is a construct used to control how many times a particular
body of code gets executed. To understand the role of the for-loop in the context of this particular function
we will take a closer look by means of a flowchart:

inti=0 i <BarCount ? True—» Result[i] = Closeli]

False

|

As you can see from the flowchart above a temporary index or iterator variable is created called ‘i’ and is
initialized to zero, which is the first value of the array for both the closing price and result arrays. The index
variable ‘i’ is temporary because it is local to the for-loop and does not exist outside of it. This variable will
be created temporarily for the loop only and will be discarded when the loop is finished.

Next a comparison is made to the total bar count variable BarCount. The BarCount variable is a special
reserved variable that contains the number of bars of information available. This variable can only be read
from but not written to. Attempting to write to this variable will halt program operation and report an error.
If the index is less than BarCount then the value of the closing price for the bar denoted by the index ‘i’ is
assigned to the element in the Result array denoted by the same index.

In Vitamin-C the Result array is predefined and has a special significance over all of the

'1| other pre-defined price arrays such as, Open, Close, High, Low. The Result array is used
el to return values back to the CallScript function in MetaStock that was used to call the
= script. It can also be read from or written to whereas the other predefined arrays can only

be read from.

The value of the index is then incremented and another comparison between the index and the bar count is
made again. If it is true then the closing price is assigned to the Result for the next bar and so on. If the
index has reached BarCount which is one element passed the last element of the array then the comparison
becomes false and the loop is terminated and the temporary index variable disappears. The Result array
now contains all of the closing price values and this is available for MetaStock to read.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 24
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

What happens if you make a mistake?

It is most likely that the first time you write your own code and run it that it won’t run because it has some
syntax errors. Fortunately the Vitamin-C IDE has built in tools, which can help you to minimize errors
before and after the code is run.

In Vitamin-C there are two methods of detecting errors. If you have used a ‘C/C++’ compiler before then
you will know that when you compile your C/C++ code the compiler may issue warnings or errors if your
code has been written incorrectly. You then fix these errors and rerun the compiler until there are no more
errors. When there are no remaining errors then the code is ready to be run. The Vitamin-C environment is
a little bit different because it has an interpreter environment where the code is interpreted rather than
compiled to machine code instructions and the run by the CPU. For this reason it is possible to run some
script even if it contains errors, which can trip it up. In this case the C-interpreter engine will halt program
operation at the first error and display a description of the error in the error-log below the editor window.
Unfortunately this will also cause MetaStock to halt as well and display an exception dialog box. For this
reason it is best to eliminate errors before the script is run by the interpreter. We shall discuss this in the
next section.

Detecting coding errors before you run the code-script.

Detecting code errors before you run the code-script requires some sort of C/C++ syntax checking
software. This type of software is a major application in itself because the C/C++ standard is such a vast
and comprehensive language environment. Fortunately nearly every decent C/C++ compiler contains it’s
own built-in syntax checker which can help you fix errors before the code can be compiled. Vitamin-C
makes use of a freely available C/C++ compiler to do the syntax checking on the Vitamin-C script and
report the errors back to Vitamin-C. It is no coincidence that it is this same compiler that was used to create
Vitamin-C in the first place ©

Installing the Free Compiler on your system

To use an external C++ compiler to parse the Vitamin-C script file and report back the errors to the IDE
requires that you have installed the freely available Borland C++ compiler Version 5.5 compiler. Please see
Appendix D for more details how to obtain and install this compiler on your system.

Running A Syntax Check

As an example let’s purposely add some mistakes to the previous Vitamin-C code example. We will
misspell the name of closing price array as outlined in grey background in the following:

void Demo ()

{
for (int 1=0;i<BarCount;i++)
Result[i]=Clse[i];
}

Now run the Syntax Checker by clicking on the main Toolbar button as shown below:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 25
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

~® Vitamin-C for MetaStock® IDE (Registered with 14 days remaining)
File Edit Search Advanced Tools, K Window Help
. ..

ledeswemd

Last function call:

jh _':Editor— C:\WitaminCScripti\Simple.c 2 Message Log |
Y4

Called from script file:

After clicking on the Syntax Check Tool button an Error Log window will open up below the Editor
window and report any messages from the compiler as in the following screen grab below. Any error
messages are highlighted in red and any warning messages are highlighted in yellow. You can double click
on these messages to highlight them in the editor as shown in the example below:

16y Editor- C:\VitaminCScript\Simple.c O] =|
t -
b b 9 b
2 void Demo () Missing ‘o
g {

4 for(int i=0;i<BafCount;i++)
Result[i]=Clse[i]:

Borland C++ 5.5.1 for Win32 Copyright [c] 1993
C:AWikaminCS cripthSimple. o

[W Error E2451 C:5WitaminCS cripthySimple. ¢ 5: Undefined symbal 'Clse! in function Demal)
== 1 grrars in Compile = i

| 1:5 |Insert | v

Correct the errors by inserting the missing ‘o’ and re-run the syntax checker.

|i_.—ﬁ Editor- C:\VitaminCScript\Simple.c - | I:Ilﬂ

i Bl

2 wvold Demo ()

3 {

4 for (int i=0;i<BarCount;i++)
) Eesult[i]=Clo=se[i]:

6

I - ;ILI
x

Borland C++ 5.5.1 for Win32 Copyeright [2) 1993

C:WitaminCS criptsSimple. o
18:5 Insert i
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 26

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Correcting coding errors at runtime

If your code has errors and you have not corrected them before you run the script by calling the script from
MetaStock, then Vitamin-C will report any errors in your code and give an explanation as to the cause of
the problem. Sometimes the error description may be a bit cryptic for the person just starting out in C/C++
but with experience you should be able to identify and correct these errors quite quickly. Even so it is better
to correct errors before you run the code but for the sake of demonstration lets purposely add some
mistakes to the previous Vitamin-C code example. We will misspell the name of closing price array as
outlined in grey background in the following:

void Demo ()
{
for (int i=0;i<BarCount;i++)
Result[i]=Clse[i];
}

When we run the code again by double clicking on the indicator that references it, then the IDE will report
an error in the Report log.

~® Vitamin-C for MetaStock IDE (Registered with 14 days remaining) i] B9

File Tools Window Help
e B & 5| 8 M| % 1edtor co\iteminCSaiptSimle.c 2Messagelog 3ReportLog |

Last function call: Dexe () Called from script file: Sinple.c

=T

|&.—§ Editor- C:\VitaminCScript\Simple.c

o e

Time Symbaol Script File Name Script Function Name Description

X' 3:25:12 PM AMP Simple.c ERROR! - Error in CallScript function
Errors_found in Vitamin-C script
it

Double dick to show more details on this item

o (| 2 | | |

E Save Log [~ Auto Serol window Contert:

|_1 1=} Jump to rest error | Q Helpon Selected [tem

|[Number of Errors: 1] [Number of Warnings: 0] [Mumber of Queries: 0] >

Double click on the error message in the Report Log or click on the Editor Window and double click on the
error message in the Error Log window at the bottom of the Editor Window.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 27
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Ii% Editor- C:\VitaminCScript\Simple.c _ |E|| il
1 void Demo() o =
2 { ~—— | Missing ‘0’

e
- - - _— -
3 for(int i=0;i<Bar€ount;i++)

Resultc[i]=Clse[i]:

&}
£

7 vold Awverage ()

8 {

2 for(int i=0;i<BarCount;i++)

i@ Result[il=(High[i]+Low([i]l+0Open[il+Clo=se[i])/4:; _ILI
»

4 [2B E rror: Symibal b defined in current e FILE:(ipthSimple.c LINE: 4

NDictionary position rewound. .. ME mor recowvered!!

Double dick to locate this line in the Editor

| 1:4 |Insert | v

You will see that the line with the error is highlighted and the mistake can be corrected by adding ‘o’ to
Clse to make it Close.

Auto Save feature.

The Vitamin-C IDE has an auto save feature, which detects when you switch to another window and
automatically reminds you to save the C-script only if it has been modified. Once you have saved the C-
script file the results in MetaStock are not automatically updated. You have to double click on your
indicators or experts in MetaStock to see the changes or re-run your explorations. There is also a reminder
for this as well.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 28
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

A Brief Introduction to C++

Before we can move on we need to discuss some of the fundamental aspects of the C/C++ language. In
Appendix A at the back of this guide we have included an introductory section on the C/C++ language. If
you are a seasoned C++ programmer then you can skip this section. For newcomers we suggest that you
read it because it will form the basis of understanding the material presented in the following chapters. This
discussion of the C/C++ language is by no means exhaustive and only really scrapes the surface of its true
capabilities.

Whilst the C/C++ language gives you plenty of rope to swing on, the same bit of rope can also be used to
hang yourself with, so bear this in mind before trying use every bit of the C++ language to do something
that could otherwise be done simply. At the end of this section if you would like to know more then please
refer to the end of this User Guide for more references on this subject.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 29
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Predefined Variables and Functions

Predefine variables and functions are available to be used in your Vitamin-C code and should not be
redefined or modified in your code.

Predefined Variables
The following variables are accessible from your Vitamin-C script and should not be re-declared.

Variable Read Only (RO) Analogous
Variable T Description Read and Write Variable in
ype (R/W) MetaStock.
BarCount integer Total number of accessible bars RO -
typically used in loop constructs.

Vitamin-C specific functions

The following predefined functions are available to be used in your Vitamin-C script and should not be re-
declared.

Function prototype Description

void dprintf(const char *fmt, ...) Similar to the standard library printf() except that it
writes to a dedicated debug log window in the
Vitamin-C IDE.

void ReportError(const char *fmt, ...) | Used to report errors from your Vitamin-C script but
also allows printf() style reporting back to the
Vitamin-C IDE.

bool IsSymbol (const char *_Symbol) Used to compare the current symbol with a given
symbol. If the current symbol is identical to the
symbol being passed as the parameter then the
function will return true. For example
IsSymbol(“AMP”’) will return true if the current
symbol data is “AMP” otherwise it will return false.

bool IsSymbolIn(const char *_Symbol) Similar to IsSymbol() but looks for a partial match.
For example IsSymbolln(“AMP”) will return true if
the current symbol is either “AMPIZZ” or
“AMPISQ”

long GetDate(int _index) Returns the current date as a long integer value in the
form of YYYYMMDD, where YYY Y=years,
MM=months (12-1), DD=days (31-1)

const char *GetDateString(int _index) Returns the date as a formatted null terminated string
in the form of “YYYY-MM-DD”
long GetTime (int _index) Returns the current time as a long integer value in

the form of HHMMTTT, where HH=hours (23-0),
MM=minutes (59-0), TTT=ticks (999-0)

const char *GetSymbol () Returns the current symbol as a pointer to a null
terminated string.
const char *GetSecurityName () Returns the current security name as a pointer to a

null terminated string.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 30
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
const char *GetPeriodicity () Returns the periodicity of the current security as null
terminated string.
Periodicity GetPeriodicity() returns
Intraday “Intraday”
Daily “Daily”
Monthly “Monthly”
Quarterly “Quarterly”
Yearly “Yearly”

Predefined Array Variables

These Array variables are accessible from with your Vitamin-C script and should not be re-declared. The
Array type is a special Class type used in Vitamin-C that encapsulates the price arrays or arrays of single
precision floating point numbers, used in MetaStock. You’ll learn a bit more about using Array variables
later on however there are full details on the Array class in Appendix C at the end of this User Guide. With
the Array class you can have individual element access using a subscript or you can treat the whole array
as an object in much the same was that it is used in MetaStock. The Array variables marked read only
should only be read from and not written to, or only used in the left side of an expression. However if a
value is assigned to them then this value will be ignored.

. . Read Only (R.O) Analogous Variable in
Variable Description Read and Write MetaStock
(R/W) i
Open Opening Price RO Open or O
Close Closing Price RO Close or C
High High Price RO High or H
Low Low Price RO Low or L
Volume Volume RO Vol
Result Stores the values returned back to R/W -
the MetaStock calling function
Userl 1* User Array parameter RO Any MSFL Expression
User2 2" User Array parameter RO Any MSFL Expression
User3 3" User Array parameter RO Any MSFL Expression
User4 4™ User Array parameter RO Any MSFL Expression
User5 5" User Array parameter RO Any MSFL Expression
User6 6" User Array parameter RO Any MSFL Expression
User7 7" User Array parameter RO Any MSFL Expression
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 31

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Your Second Step

The last example was pretty basic but should give you an idea of how the Vitamin-C environment fits in
with the MetaStock environment. Note that there was no use of a compiler anywhere (except for syntax
checking), which is one of the really nice features of the Vitamin-C environment! Now lets step up the pace
a bit and add a bit more complexity. We will create a function, which computes the average of the High,
Low, Open and Close of the bar for each bar in the array.

We’ll discuss functions later on but just for now a function is a section of code, separate from the main
program that, perform a single, well defined task.

A function is a section of code, separate from the main program that, perform a single,

,
|
"l)
= well-defined task.

In the MetaStock Formula Language (MSFL) we can compute this average using the following code but
again we are just trying to demonstrate how Vitamin-C allows as individual access to each element of the
array. This is how you would do it in MetaStock MSFL.

Average:=(High + Low + Open + Close)/4;

Now we will code the same thing in Vitamin-C using array indexing. We can also code it using array
processing in a similar fashion to the way it is coded in MetaStock but we will discuss this later on. The
Vitamin-C code used to do this is shown below in yellow background.

void Average ()

{
for (int 1=0;i<BarCount;i++)
Result[i]=(High[i]+Low[i]+Open[i]+Close[i])/4;
}

Instead of creating a new script file we will just add the function below the Demo function that we created
earlier on. One of the advantages of Vitamin-C is that it allows us to create a library of functions in the one
script file and call each one individually. You may not want to do this though and keep each function in a
separate script file.

If it’s not already open, open the file Simple.c file in the Vitamin-C editor. You can do this in a number of
ways. If the Vitamin-C window is not being displayed you can bring it up by clicking on its icon in the
system tray.

|Bla@HVZOT T E Yo ARPO 224m

If the script is not open you can quickly open it from the File — Recent Files, menu or click on the function
or script file name in the top status bar if it has previously been run in MetaStock.

Lastﬁmcl:innca&:— Dgino Callellfromscriptﬁk:f.[c: VitaminCScript\Simple.c _ o®

Now add the code to the ‘Simple.c’ script below the original ‘Demo’ function.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 32
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

63 Editor- C:\VitaminCScript\Simple.c =10 x|

1 wvold Demo () -

2 s

=] for{int i=0;i<BarCount;i++)

4 Result[i]=Clo=e[i]:

5}

[

7 |vold Average ()

g {

9 for(int i=0;i<BarCount;i++)

18 Result[i]=(High[i]+Low[i]+0pen[i]+Close[i]) /4:

11

12 -
| ;IJ
| 2527 [Insert | 4

Save the script by clicking on the ‘Save’ tool button in the main toolbar.

.G

Switch back to the MetaStock window and edit the indicator by double clicking on the indicator chart and
change the function call from ‘Demo()’ to ‘Average()’.

Indicator Editor x|

;N | = = [0 || 1 Editor- c: WitaminCScriptigimple. c

Formula |
Mame: \itamin-C - First Step ¥ Display In QuickList
Fomula: [ExtFml{ "VitaminC.CallScript", -]

i : { name of =s=cript file }
Civerage()"):; { function name and paramnsters

[~
ﬂ Functions... |

-

oK El Cance Help |

Click ‘OK’ and the indicator should automatically invoke the new function and the indicator will change
slightly.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 33
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
-lolx|
H\e Edit View Insert Format Tools Window Help ;Iilil

D RIER| BB - & &|[Fwmcrmee - & 2 fu £ 5 0 e W2

mm Vitamin-C - First Step

W 11 oo
iall Rt L
N 0 Eooe
_ 8 -]
l 74 Foo7
N 4
& - F o6
5 F 5
. .| 1
= 44 [}g Fooa
=]
é m AMP LIMITED ORDINARY =13

11

10—:M o MNWMMW -0
g L

9
8 1}[}%& M%W s
23 by a) J*M"W -
. W‘ﬁ Vv ' \l‘[.l,ﬁ L 5
5 WWM Wl L
4] “? - 4
20000; 20000
10000—- — 10000
2007 Aug |Sep [Oct |Mov |Dec (2008 Mar [Apr [May [Jun |Jul [Aug [Sep |[Oct |Mov |Dec (2009 Mar |Apr |May |Jui
_ Hezp|t+ae|4ra
|1 =l|J =y
| e I =] | [mterbani
For Help, press F1 [21/05/2009 | [ase191 [22 [§ [4
Exercise

As an exercise expand the display and check to see whether the indicator is actually showing the average of
the four prices

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 34
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Your Third Step.

Now we will change the code so that after a certain date we will calculate the average slightly different so
that is the average of only H,L.C instead of H,L,C,O. Lets chose an arbitrary date such as 3" November
2008.

In Vitamin-C we use long integer variables to represent dates and time, which provides a
convenient means to express dates irrespective of country. For example the date 3™
November-2008 would be represented by the long number 20081103, which is sort of like
writing the date backwards. In general we represent dates using long integer variables in
the following format:

YYYYMMDD
Where ,

i Y e YYYY =year,
JJH e MM = month [12-1]
e DD =day[31-1]

Time is also represented by a long integer number of the following format:
HHMMTTT
Where,

e HH = hours [23-0]

e MM = minutes [59-0]
e TTT = ticks [999-0]

Ok so now lets modify the code and call the function ‘NewAverage’. The additional code is highlighted in
grey background:

void NewAverage ()
{
for (int 1=0;i<BarCount;i++)
{
if (GetDate (i) > 20081103)
Result[i]=(High[i]+Low[i]+Close[i])/3;
else
Result[i]=(High[i]+Low[i]+Open[i]+Close[i])/4;
}
}

Instead of creating a new file we will add the new function to the existing file ‘Simple.c’. If it’s not already
open, open the file Simple.c in the Vitamin-C editor. You can do this in a number of ways. If the Vitamin-
C window is not being displayed you can bring it up by clicking on its icon in the system tray.

|Bla@HVZOT T E Yo ARPO 224m

If the script is not open you can quickly open it from the File — Recent Files, menu or click on the function
or script file name in the top status bar.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 35
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

| Last function Demo Called from script c: WitaminCScript\Simple. ¢ |

Now add the code to the ‘Simple.c’ script below the original ‘Average’ function.

& Editor- C:\VitaminCScript\Simple.c =10 x|
7 |vold Average () ﬂ
g {
9 for(int i=0;i<BarCount;i++)
18 Result[i]=(High[i]+Low[i]+0pen[i]+Close[i]) /4:
11 3
12
12 void Newhverage ()
14 {
15 for{int i=0;i<BarCount;i++)
16 [
17 if (GetDate (i) > 20031103)
15 Result[i]=(High[i]4Low[i]4Close[i]) /3:
19 else
=8 Fesult[i]=(High[i]+Low[i]+4+0pen[i]+Close[i]) /4:
21 ¥
22
-
‘ k=l=} _'IJ
| 25:27 [nsert | 4

Save the script by clicking on the ‘save’ tool button in the Vitamin-C window.

= E\” 2N | = = [0 || 1 Editor- c: WitaminCScriptiSimple.

Switch back to MetaStock and edit the indicator by double clicking on the indicator chart and change the
function call from ‘Average’ to ‘NewAverage’.

Vitamin-C - First Step Properties x|

Color.-"'St_erI Horizortal Lines Formula |

Mame: I‘-.-'"rtamin-C - First Step W Dizplay In QuickList

Formula: ExtFnl("VitaminC CallScript”, ;I

{ name of =s=cript file }
MHevdverage : { function name and
para T=
ﬂ Functions... |

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 36
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
Here is what the indicator looks like now.
=loix|
File Edit View Insert Format Tools Window Help = 5'5‘
J D2 &R 5% BR|o| ¢ & |[FEvimin-Fiststep @ a5 dha N
| | Vitamin-C - First Step ETEY
ﬁ§ 11 oo
4]
— | 10 - 10
™ 95 -]
1_ & oo
N i -7
— 6 r 6
lf o3 Fos
A 4] —
£ -AMPH]TED ORDINARY > o x]
: 11] r 11
10—“”V’hﬂ‘mﬁwfﬂﬂthAfy“““ﬁ%wﬂﬁuh\ =0
9 "h‘} r 9
‘1 Py i -
7 by W, &Mﬁ}wf* -7
] ! } 'nu":wm L i
5] W‘l"‘[)‘fw [5
7 W -
m Volume =13
20000—: 20000
10000 — 10000
=000 %1000]
2007 Aug |Sep [Oct |Mov |Dec |2008 Mar [Apr [May [Jun [Jul Aug [Sep [Oct |Mov |Dec |2009 Mar |Apr |May |Jui
A DRI EE-EIRN Y-
I = = || ERdEEE || 2 s w555 |
J lAMF' |I j”lntarbankFX j| Trade | |
For Help, press F1 | | | [57 [$ A

OK it’s hard to see any change so lets modify the code slightly so that we can check if the code is actually
doing what it is supposed to do.

Instead of calculating a different average after the 3™ Nov 2008 we will substitute the average with a
constant value of say 6.

This is what the code looks like now.

void NewAverage ()
{
for (int i=0;i<BarCount;i++)
{
if (GetDate (i) > 20081103)
Result[i]=6;
else
Result[i]=(High[i]+Low[i]+Open[i]+Close[i])/4;

When we change the Vitamin-C script and update the indicator in MetaStock we get the following.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 37
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

JRL=T]
Fie Edit View Insert Format Tools Window Help -7 =l

J 0= H|§Iﬁ| 3 E,| ﬂ‘-&:} @”VIIamm-E-F\rstStep j‘ @ 3‘ i t 5 34 g‘k‘_}
) | Vitamin-C - First Step ol =i
W 11.0 = = 110
+ | 1057 =~ 105
— 10.0 = =~ 100
N 9.5 - - 95
— 9.0 - - 9.0
8.5 - - 85
| 8.0 = = 8.0
¥ 75 - 75
7.0 - = 7.0
6.5 - - 6.5
i '| 6.0 = A
- 5.5 = 55
= 5.0 - % = 50
-3 (m AMP LTMITED ORDINARY I=1E3

T r 1"
e fMW\‘% L 10
¥ : F
ki
P & K — 8
W S -
] vl \hm‘ -6
5 IWWM I o
. ¥ A L
] v 4
m Volume =13
25000 - = 25000
20000 - = 20000
15000 - - 15000
10000 - = 10000
G 00
2007 Aug |Sep |Oct |Nov [Dec (2008 Mar |[Apr |May |Jun |Jul |Aug |Sep |Dct [Mov |Dec |2009 Mar |[Apr |May [Ju

K| Hezp|t+ae|4ra

I = <l || BEREEEG |2 s @ EES

J lAMF' || j”lntarhankFX j| Tads | |

For Help, press F1 [27/01/2009 | [fa1r [[m08 [§ [

Yep the code works as expected ! After the 3™ of November 2008 the indicator displays a constant value of
6 !! OK so that was fun so why don’t we get a bit smarter and make the indicator display the last value just
at the 3" November 2008 rather than display an arbitrary value of 6.

To do this we need some sort of flag, which is just a fancy word for a variable that contains a value. We
declare a flag called ‘lastvalue’ to be of type float, which is short for floating-point variable, which is the
type of value that MetaStock uses for its price and volume arrays.

A floating-point variable consists of both integer part and a decimal part with a decimal
point that separates the two. Examples of a floating point number is:

12.4567
-2,000,000.78
- $10.6789
1/
ey Two types of floating point variables exist in the C++ language. This is the float and

double which is short for double precision. For most cases in the trading world a float
variable is all that is needed to represent price data which also has the added benefit of
occupying only half the memory required by the double variable. Indeed all of the price
values used in MetaStock are stored using floats rather than doubles. However the double
type is still available to be used in the Vitamin-C script if so desired.

The modified code to do this is as follows:

void NewModifiedAverage ()

{
float lastvalue=0;

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 38
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

for (int i=0;i<BarCount;i++)
{
if (GetDate (i) > 20081103)
Result[i]=lastvalue;
else

{
Result[i]=(High[i]+Low[i]+Open[i]+Close[i]) /4;
lastvalue=Result[1];

}

Add the above code to the Vitamin-C script, save it and then update the indicator with new function name
as follows.

Vitamin-C - First Step Properties x|

Cﬂlor;"St'_.erl Horizortal Lines Formula |

Mame: I‘u"rtamin-C - First Step ¥ Digplay In QuickList
Fomula: |ExtFml("VitaminC CallScript". -
“?.WDJ-E—- [{ name of script file I
CHevdodifiediverage() "> { function name and
jui=} [y r]

=
;I Functions... |

-,

oK Cancel | Aoy | Hep |

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 39
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
JRL=T]
Fie Edit View Insert Format Tools Window Help -7 =l
J 0= H|§Iﬁ| 3 E|ﬂ"€:} @”VIIamm-E-F\rstStep j‘ @ 3‘ i t 5 34 g‘k‘_}
| | Vitamin-C - First Step EIEY
&
+
~
R o7 F T
— 70 E 70
6.5 E 65
j__" 6.0 E 60
= 55 E 55
b 5.0 F 50
£ == AMP LIMITED ORDINARY I=1E3
e ~ 1"
- 10
- 9
r 8
"‘.m]»f\ns"w.‘,f» ‘W‘JLT o7
¥ + \IWW r B
5] WM N!‘““”"ﬁ“‘\ L 5
4+ A -4
' Volume o =]
EUUUU—: 20000
10000 — 10000
o 1000
2007 Aug |Sep [Oct |Mov |Dec (2008 Mar [Apr [May [Jun |Jul [Aug [Sep |[Oct |Mov |Dec (2009 Mar |Apr |May |Jui
K| Hezp|t+ae|4ra
I = <l || BEREEEG |2 s @ EES
J lAMF' || j”lntarhankFX j| Tads | |
For Help, press F1 [[[[s [§ v

Lets taker a closer look at the indicator. Where the mouse pointer is, is indeed the 3-Nov-2008 and the
value of 5.73750 at that date is maintained for the rest of the indicator, which means that the Vitamin-C
script is working as expected.

75 F 75
] | 5.73750 i
7.0 / - 70
6.5 / — 65
6.0 ' ;— 6.0
55 Lk._l_. - 55
-~ This last example displays one very important concept, which cannot be done easily with
the MetaStock formula language (MSFL). The concept of a flag variable, which can be set
\J at a particular date or dates is what gives Vitamin-C its flexibility in creating many
different types of indicator that would be difficult if not impossible to do using the MSFL.

Corollary

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 40
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

As I have stated earlier, Vitamin-C allows you access to each element in an array variable by using
subscripting. You can also treat arrays as a single object in much the same way that MetaStock does. To
prove this we will rewrite the original averaging code using array objects.

Create a new function called ‘EasyAverage’ and paste it into the ‘Simple.c’ script file. Note the absence of
any subscripts on any of the predefined array variables.

void EasyAverage ()

{
Result=(High + Low + Open + Close)/4;

}

Add the code above to the Vitamin-C script, save it and then update the indicator with new function name
as follows.

iy Editor- C:\VitaminCScript\Simple.c =10] x|
2 Result[il=lastvalue: |
31 else

a2 [

23 Result[il=(High[i]+Low[i]l+Cpen[il+Cla=se[i]) /4

24 lastwvalue=Result[i]:

25 }

26 1

a7}

=t

23 vold EasyhAverage ()

48 {

41 Eesult=(High + Low + Open + Close)f4:
42

o _"|LI

| 25:27 [Insert w

Vitamin-C - First Step Properties x|

CulurfSt'_.rIel Horizontal Lines Formula |

Mame: I‘u"rtamin-C - First Step ¥ Display In QuickList

Fomulz: |ExtFml({ "VitaminC.CallScript”,]
"Sinupesseoteece.,, | name of script file }
“'FasyvAverage()"),- { function name and

pataietere e’ T

[
;I Functions... |

w

oK | Cancsl | mpy | Hep |

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 41
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
What do you see ?
1o x|
==| File Edit View Insert Format Tools Window Help = 5'5‘
J O | E@| 5 BR[| ¢ & |[EieminCFase -] @ % /i £ 5 # a|N2
-V’rtamln -C - First Step ETEY
'k 11 Foon
|] -
~ 9 7 r 9
_ 8 F]
Q 7] - 7
; 6 -
flf 2 -
4| r
— 4 o4
= —
-3 [AMP LIMITED ORDINARY o =]
i 11 j e, Eoo1
10 —Mmﬂ«,{f“ﬁ W“w -0
95 - 9
- M A I
77 r T
] \mw»!u mfwﬂ’“l‘hl‘
G] tﬁ - 5
5 WWM #\"hw [5
47 r 4
m Volume o x|
25000 = = 25000
20000 = — 20000
15000 - - 15000
10000 = = 10000
xioog]0 xi00] 00
2007 Aug |Sep |Oct |Mov [Dec (2008 Mar |Apr |May |Jun [Jul Aug |Sep |Oct |Mov |Dec (2009 Mar |Apr |May Ju
[DRI EE-EIRN Y-
I = || EEaEE- | 2 s @ EE S
J lAMF' |I j”lntarbankFX j| Trade | |
For Help, press F1 | | | ’7 3:23 l? 4

OK, the results should be identical to the ‘Average’ function, which should be identical to the MetaStock
code.

Exercise

As an exercise you can create three different version of the same average indicator using

e the MetaStock formula language,
e using Vitamin-C and array subscripting
e using Vitamin-C and array objects.

Then you can overlay the three indicators on top of each other and see if there are any discrepancies. There
shouldn’t be of course!

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 42
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Your Fourth Step

Getting a little bit more serious !

OK it’s time to get serious now and do something useful. We will get back to one of our original problems
of how to code a simple time stop. Later on we will

Coding a Time Stop

The following code stub represents an example of C++ code that could be used to implement a time stop
that exits when the number of bars exceeds a certain limit which we shall call Nbars. Unlike our attempt at
using the MSFL to code a profit stop, the C++ coding actually filters out bogus entry triggers because it is
able to set a boolean variable flag at a particular date/time and maintain this value until it is ready to be
updated again. This is only possible by being able to iterate through all of the values in the price arrays.

i) A boolean variable is a variable that can only take one of two values, which are either
M"J ‘true’ or ‘false’.

Now lets get down to business and code up a time stop, which is a little bit simpler than the profit stop
problem discussed in the very early part of this manual but a bit more complicated than the previous
averaging functions. The equivalent Vitamin-C script can be written as follows. Don’t worry if this looks
alien to you but as you can see, the way things are coded is very different to the MSFL that you are familiar
with. This function can be used to stop out a trade after Nbars. The Vitamin-C function accepts one
argument, which is the number of bars.

Functions can accept arguments from the calling program which are essentially constant
values of some kind. Within the function block itself these arguments are accessed
through the use of parameters, which are a special kind of variable that holds the argument
that is being passed to the function.

i)
iy

void TimeStop (int Nbars)
{
bool InTrade=false;
int bars=0;

for (int i=0;i<BarCount;i++,bars++) // loop for all bars
{
Result[i]=0; //
if (!InTrade && Userl[i]>0)
{

I entry trigger

InTrade=true;
Result[i]=1;
bars=0;

}

if (InTrade)
{

if (bars >= Nbars)
{
Result[i]=1;
InTrade=false;

}

it as a valid exit condition

}
}
}

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 43
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Click on ‘New’ from the file menu and copying and paste the code stub above into the edit window and
save it as ‘“TimeStop.c

The following MSFL code stub is used to call the above function from your MetaStock code with a 30 bars
time stop using an arbitrary weekly trigger.

EntryTrigger:=(DayOfWeek ()=1) ;

ExitTrigger:=ExtFml("VitaminC.CallScriptl",
"TimeStop.c", { name of script file }
"TimeStop (30)", { function name and parameter }

EntryTrigger) ;

EntryTrigger; { display entry trigger on chart }

ExitTrigger; { display exit trigger on chart }

Create a new indicator in MetaStock and copy and paste the code above into it. The indicator will display
all of the Entry and Exit Triggers. Overlaying the indicator on a chart should look like the following.

o]
Fie Edit View Insert Format Tools Window Help =]
J O = ﬂ|§|ﬁ| # E|n‘€} @”E‘Accfﬁwinglndex j‘ @ ,,.%. i t 5 04 g‘k‘_}
[| Vitamin-C - Time Stop ol =i
[
i 0.9 - 09
~ 0.8 - 08
— 07 - o7
| 06 - 06
05 - 05
L
B 0.4 - 04
- 03 - 03
J 'l 0.2 - 0z
= 0.1 LA
0.0 A
1| I T T S S S S S ——————————-——————————————————_———~_~——___
=zl AMP LIMITED ORDINARY E1EY

. g "‘PM‘M»MM{
: : h}rh"]wﬂ ,{"'wajff*wh :
7] W "o N«Mw 5}“1

2: WWWM ey 1

2 ¢

20000 20000
P 100000
2007 |Aug |Sep |Oct |Nov |Dec |2008 War |apr |May |[Jun [Jul |Aug |Sep |Oct |Mov |Dec |2008 Mar |apr |May |Jur
A HEE I -
I = —— 5| s [o s w @B 5 5
J JAMP || j”lntarbankFX j| Tirad= ||
For Help, press F1 [[[|_4:3? l? v

I have purposely changed the style and colors of the Entry and Exit triggers so that it is easy to distinguish
one from the other. However there is still one problem in that the Entry Trigger formula is displaying all
entry triggers including the triggers that have been ignored. How can we distinguish the actual entry
triggers from the triggers that have been ignored ?

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 44
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

What we can do is to encode the Result array so that different values represent different combinations of

the entry and exit signals. Because we are representing two signals there are four possible combinations
according to the following table:

Value of Result[i] Description
0 No entry or Exit trigger
1 Entry Trigger only
2 Exit Trigger Only
3 Entry and Exit Trigger at the same time

Now how do we modify the code to achieve this ??

Quite simply we assign ‘1’ to Result[i] for every actual entry trigger we detect and just add the value of ‘2’
to Result[i] every time we detect a valid time stop exit trigger, otherwise every other value in the Result
array should be set to ‘0’. The modified code will look like the following with the changes marked in red:

void TimeStop (int Nbars)
{
bool InTrade=false; // boolean variable used for trade flag
int bars=0; // variable used to keep track of the bar count
for (int i=0;i<BarCount;i++,bars++) // loop for all bars
{
Result[i]=0; // initialize result
if (!InTrade && Userl[i]>0) //
{

for each bar

if not in a trade and valid entry trigg

InTrade=true; // set
Result[i]=1; //
bars=0; // r
}
if (InTrade) // 1
{
if (bars >= Nbars) // check for a time stop condition
{
Result[i]+=2; // threshold reached so mark it as a valid exit condition
InTrade=false; // reset

The ‘C/C++’ language has a number of short cuts in the form of compound statements,
which makes coding a lot more efficient. For example the line in the above code which
adds ‘2’ to the Result;

il Result[i]+=2;

is short for:

Result[i] = Result[i] + 2;

We need to change the indicator code to the following:

EntryTrigger:=(DayOfWeek ()=1) ;

EncodedTrigger:=ExtFml("VitaminC.CallScriptl",

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 45
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
"TimeStop.c", { name of script file }
"TimeStop (30)", { function name and parameter }
EntryTrigger) ;
EncodedTrigger; { display the encoded entry/exit triggers }

Overlaying the indicator on the chart will give us something that looks like the following:

Il
Fie Edit View Insert Format Tools Window Help == x|
D2 SR BR[| $ R |[Macsignd: a2 s ks 8@ N
I (m Vitamin-C - Time Stop =1 E3
& 20 Eoo20
J’_
N o8
! 1.0 - 10
32
054 - 05
A
m
004 - oo
£
=l |8 AMP LIMITED ORDINARY I=1E3

9 ‘1"1 o9
1 b
8 r A ,{M w‘]ffnw =]
7 by Mot ylkf -7
] i Tt J ‘iw
6] w -6
5] WWM N/«MMJ L
4 s o4
m Volume o =]
20000 [20000
1000 IS
2007 Aug |Sep |Oct |Mov |Dec (2008 Mar [4pr |May [Jun [Jul |Aug [Sep |[Oct |Mov |Dec |2009 Mar [Apr |May |Jur
L Hep|tvcaalarm
I = o | EEEEEE | e s w@EEE |
J MP || d”lnlarbanKFX j| Trads ||
For Help, press F1 [[[|_4:36 ITI_ i

Now we can see the valid entry triggers (bars with a height of ‘1”) and the corresponding timed out exit
triggers (bars with a height of ‘2’). Obviously there are no conditions where entry and exit condition
coexist together which would display a bar of height ‘3’. You are probably wondering why would that
situation would happen in the first place ! Wouldn’t an exit condition always precede an entry condition by
at least Nbars ? Well quite simply this scenario can occur when you exit a trade on a bar but there is
another entry signal on the same bar.

Now lets get a bit more fancy with this example and decode the encoded trigger returned by our
TimeStop() function. This will allow us to display the indicator with different colors to represent both
actual entry and exit triggers. Use the following MSFL code to do this:

EntryTrigger:=(DayOfWeek ()=1) ;

EncodedTrigger:=ExtFml("VitaminC.CallScriptl",

"TimeStop.c", { name of script file }

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 46
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

"TimeStop (30)", { function name and parameter }

EntryTrigger) ;

ActualEntryTrigger:=(EncodedTrigger=1) OR (EncodedTrigger=3) ;

ActualExitTrigger:=(EncodedTrigger=2) OR (EncodedTrigger=3) ;

ActualEntryTrigger; { display actual entry trigger on chart }

ActualExitTrigger; { display actual exit trigger on chart }

Blue bars represent valid entry conditions and red bars represent valid exit conditions. Of course if there are
exit triggers on the same day as valid entry triggers then the red bar will blot out the blue bar so it would be
a useful exercise to split the indicator up into two indicators for both entry and exit conditions respectively
and display them on a separate chart.

Il
Fie Edit View Insert Format Tools Window Help == x|
J 0O = n|§@.| & g|n‘$ @”EACCJ"SMHQMdEH j‘ 8 2 fmf s M Q_D\k?
Y
il TS R
S 0.8 - 08
— 0.7+ - 07
| 0.6 F 06
0.5 - 05
L]
#® 0.4 - 04
— o034 F o3
I 0.2 - 02
= 014 A
0.0 F oo
£

== AMP LIMITED ORDINARY I=1E3

1U{W‘tﬁf MPM\M"M “w.'lq,l SR
94 ~]
4 k} 'ﬁ\'w
8 r A ,{M w‘]ffnw =]
] i Yt i -
] ¥ J ‘iw
6] w -6
5] WWM N/«MMJ L
4 s o4
m Volume o =]
20000 [20000
1000 IS
2007 Aug |Sep |Oct |Mov |Dec (2008 Mar [4pr |May [Jun [Jul |Aug [Sep |[Oct |Mov |Dec |2009 Mar [Apr |May |Jur
L Hep|tvcaalarm
Il =]l || SmEEmE- s s m@EEE
J MP || d”lnlarbanKFX j| Trads ||
For Help, press F1 |_4:44 ITI_ A

Creating a MetaStock Time Stop Expert

Before moving on, it should be noted that Vitamin-C scripts are not just limited to indicators. In actual fact
a Vitamin-C script can be called anywhere the MetaStock Formula language is used. For example you can
call a Vitamin-C script(s) from the MS Explorer, built in system tester and Expert for example. The Expert
tool is what we want to focus on now so let’s create an expert for our TimeStop function, which displays
both the actual entry and exit signals.

In MetaStock create an Expert and call it “Vitamin-C (Time Stop)”.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 47
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

In the ‘Symbols’ tab create a new symbol called ‘Entry Trigger’ and add the following code. In the
‘Graphic’ tab select a blue ‘Buy Arrow’ and label it as “Entry Trigger”.

EntryTrigger:=(DayOfWeek ()=1) ;

EncodedTrigger:=ExtFml ("VitaminC.CallScriptl",

"TimeStop.c", { name of script file }
"TimeStop (30)", { Vitamin-C function name and parameter }
EntryTrigger) ;

EncodedTrigger =1 OR EncodedTrigger =3;

In the Symbols tab create a new symbol called ‘Exit Trigger’ and add the following code. In the ‘Graphic’
tab select a red ‘Sell Arrow’ and label it as “Time Stop”.

EntryTrigger:=(DayOfWeek ()=1) ;

EncodedTrigger:=ExtFml("VitaminC.CallScriptl",

"TimeStop.c", { name of script file }
"TimeStop (30)", { Vitamin-C function name and parameter }
EntryTrigger) ;

EncodedTrigger =2 OR EncodedTrigger =3;

Now attach the expert to the chart.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 48
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
-lolx|
EH\E Edit View Insert Format Tools Window Help ;Iilil

J DBH|§@|%-E| ‘{:}@”EAcc!Swmglndex j‘@&ﬁﬂts Mg‘k‘_}

= AMP LIMITED ORDINARY

I [Vitamin-C - Time Stop o x|

[T
Y . L o9
| o8- oo
| o7 Foa7
| 0.6 oo
05 E oos
N 0] F 04
— o034 ooz
A 02q - o2
= o] F o4
s oo

11 Stop i‘:‘h Stop stop L
10 —Mﬁf W"M"\M Time -~ Time -0
try 1t Entry Stop Stop Time,
9 Tger _EMY Trigger E_me E_nt ylly 4 Stop r 9
g Trigger Trigger Trlggerlr X MW 'I;tl'ﬂn: Time Time L g
1 1\@ flentry K 1o top Ti i Time
7 rigger ,11 ime Time 7
] TE_mry "l“ Stop Stop Stop
6 figger Trlgger Entry Time b4 r 6
1 ntry
5 Trlgger Trager - gqtef W Smpmmdj?"\,! = 5
4] Trigger Entry Eniry 'f' Entry n
1 Trigger | Trigger Entry Trigger
0 —aens—————————————— o =]
20000 F 20000
iod? il bl P
2007 JAug [Sep |oct |Nov |Dec J2008 Mar [Apr [May [Jun [Jul [Aug [sep [oct [Nov |Dec [2009] Mar |apr [May [durl
1 Hezp|t+ae|4ra

| [6ars H——=|| & slo MEO OO

J lAMF' || j”lntarhankFX Trads | |

For Help, press F1 [[[[[aaa [$[4

Lets expand the display for a sec and have a look at it in more detail. Note how the expert signals

correspond with the indicators, which tells us that everything is working well.

W Vitamin-C - Time Stop 1K
0.9 F o9
08 Fos
07 Foo7
06 F o5
05 F 05
0.4 F o4
0.3 F o3
02 E:
0.1 R
00 F oo

mAMP LIMITED ORDINARY E1E

lr
55+ 1 1 - 55
hpt 14+, 7T
50_1_1_}{11 H f T lilj TI bt “{i L,
X _I_J__L 1+ Entry 17t ’
e T ‘I'T Time 1- J'} 1.1_} Trigger B
5] Stop o4
iyt { T I3
It
40 | W Emry E 40
1 Trigger
35 | F a5

m Volume =13

20000 ‘ ‘ - 20000

i000l0 71 |||....||||||I|I‘|I|.||II|..|||............. N R R AR R <1000} 00

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 49

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Building a simple Profit Stop Indicator Using Vitamin-C

We have managed to hold off coding the ubiquitous Profit Stop until now, but we needed to cover some
basics before we dived in at the deep end. Finally we can get down to business and work on the elusive
profit stop that everyone has been waiting for years to code in MetaStock !!

We will design and code a profit stop that simply enters in at the opening price and exits at the closing price
when the closing price exceeds the opening price at entry by a certain percentage as specified by a function
parameter which can be changed in the call to this function from MetaStock. This will form the foundations
of a more elaborate profit stop function but at the same time will illustrate some of the power and flexibility
of the C++ language in writing these kinds of functions.

int ProfitStop(float PercentThreshold)
{
bool InTrade=false;
float EntryPrice=0;
float ProfitThreshold;

for (int i=0;i<BarCount;i++) // loop for all bars
{
Result[i]=0; // initialize result for each bar
if (!InTrade && Userl[i]>0) // check if not in a trade and valid entry trigger
{
InTrade=true; // set

EntryPrice=Open[i]; // se

// ca te > profit threshold price
ProfitThreshold=EntryPrice* (1 + PercentThreshold/100);
Result[i]=1; // mark a valid entry condition

}

if (InTrade) // if in the tr
{
if (Close[i] >= ProfitThreshold) // check for a profit stop condition
{
Result[i]+=2;
InTrade=false;

d so mark a valid exit condition

Create an indicator with the following MS code.

EntryTrigger:=(DayOfWeek ()=1) ;

EncodedTrigger:=ExtFml("VitaminC.CallScriptl",

"ProfitStop.c", { name of script file }

"ProfitStop(5)", { function name and profit threshold argument }
EntryTrigger { User defined entry trigger }

)i

EncodedTrigger;

Apply the indicator to the chart.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 50
http://www.compuvision.com.au

Vitamin-C for Metastock
Version 1.0.1

+MetaStock - [AMP LIMITED ORDINARY] = DILI
Fi\e Edit View Insert Format Tools Window Help -7 =l

J 0O = n|§ |ﬁ| & E| ﬂ‘-&}} @”Vllamm-E-F'rohtStop j‘ @ ﬂ%‘ §i) t % ¢ Q_D\R?

m Vitamin-C - Profit Stop

’E 204 FE 20
~ 1.5—2 F 15
T 1.0—2 F 10
B na—f ‘ H F o5
j__’| o.o—f F oo
=
T

B ;

il :
®] Py “M\N e
2 74 \if Y K L 7
55 6 : o6
] 5 M M L 5
4 t{! ["
m Volume =13
40000 - - 40000
35000 - - 35000
30000 - - 30000
25000 = - 25000
20000 = = 20000
15000 = = 15000
10000 - - 10000
xio00|0 x1000100
2005 [3 |0 [N |D (2006 AW A]S |0 N |D j2007 A []A (S0 [N |Df2008] JA M)A S (O N D |2009 SN LAl
o Hep|trealarm
I | =
| i I =] [interbank P
For Help, press F1 [[[l_ 1:02 IT A

As you can there were quite a few exit triggers up until the bull market collapsed when the bears took over
at the end of 2008. Now lets take a closer look at the chart to see if the stop is working as expected. We
have expanded the chart around the last entry-exit pair as follows.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 51
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
o]
Fie Edit View Insert Format Tools Window Help =&l
J 0O = n|§m| & E|K‘J‘€} @”Vllamm-E-F'rohtStop j‘ 8 2 M f s M Q_D\R?
S | W V/itamin-C - Profit Stop
B
J’_
~ | 15 L4
T 10 Coo
B 05 F o5
A oo = 0o
;=) = AMP LIMITED ORDINARY SN o] x|
& 1 s I K
—_| 10545 . 5 - 105
”” E J-‘Lr{‘[*Jﬂ_ﬁﬁ_ng TT_{—-LFLJ-?J“LJ» } ‘I_'I-‘I-:I'I"I--L_}l H
] +
7|] ot Bt 1 el e o
1 R boIr byt 1
&] _I.l‘l' ‘h‘[1' L{ ‘[i +
b 95 tj}{* F a5
15000—5 F 15000
mnnn—; ‘ ‘ ‘ ‘ ‘ ‘ 10000
5000 E 5000
o3| .|||||.\|||||||‘||‘||.\|I|||‘Im| | |||||||\||||‘H||||||\|||IIM|\I |H|1ﬁ|
EEEAFE 15 22 J2a [|s 1z T Jes [|5 12 19 J26 |2 [0 s [23 a0 |7 [
|2007 February March April [May
4 |t waalard
I | =l|| BEREEEE- || oo @ BB |
J lAMF‘ || d”lnlarbanKFX j| Trade | |
For Help, press F1 [[l_ 1:06 ITI_ i
Date Status Price
22-Jan-2007 Entry Open = 9.98088
23-April-2007 Exit Close = 10.5584

Profit Gain = (10.5584 — 9.98088)/9.98088 * 100 = 5.78%
Which meets the criteria for a profit stop of 5% or more.

Now lets get a bit more critical. How can we tell what the profit gain was for the preceding bars before the
exit bar just so that we can put our mind to rest that our Vitamin-C script is actually calculating things
properly ? The simplest way would be to display the profit data for each bar between and including the
entry and exit bar. We can do this using the built in equivalent of the ‘C’ printf() function which is designed
to display information to a command consol or in the case of Vitamin-C, a dedicated debugging consol
which is just a fancy name for a window.

& In Vitamin-C the equivalent of the ‘C’ printf statement is called dprint and instead of
1 ,.-'I displaying data to the standard consol, when called, it displays data in a dedicated debug
oy log window within the Vitamin-C environment.

In our profit stop function will add the following code marked in grey background color. Don’t worry if it
looks cryptic to you at the moment, as we will discuss it in more depth later on. To put your mind at ease
the C++ printf function has been described in depth in many books on the C++ language. It is usually the
first C++ function that is discussed in any textbook on the C++ language.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 52
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

int ProfitStop(float PercentThreshold)
{
bool InTrade=false;
float EntryPrice=0;

variable used for trade f

1
<

able used to store the entry ice on trade entry
able used to hold the profit threshold price

float ProfitThreshold; // var
for (int i=0;i<BarCount;i++) // loop for all bars
{
Result[i]=0; // initialize result for each bar
if (!InTrade && Userl[i]>0) // check if not in a trade and valid entry trigger
{
InTrade=true; // set the flag
EntryPrice=Open[i]; // set the entry price

fit th

// calculate the pr S
ProfitThreshold=EntryPrice* (1 + PercentThreshold/100);
Result[i]=1; // mark a valid entry condition

dprintf ("Date=%d, Opening Price=%f\n",GetDate (i), (double)EntryPrice) ;

}
if (InTrade) // 1if in the trade do the check
{
dprintf ("Date=%d, Closing Price=%f, Profit=%f\n"
,GetDate (i), (double)Close[i], (double) (Close[i]-EntryPrice) /EntryPrice*100) ;
if (Close[i] >= ProfitThreshold) // check for a profit stop condition

{

dprintf("***\n")’.
Result[i]+=2; // threshold reached so mark a valid exit condition
InTrade=false; // reset the flag

The first call to dprintf displays the entry conditions such as the date and opening price in the debug log,
whilst the next call displays each closing price, along with the date and the actual profit gain relative to the
entry price or opening price in our case. The third call to dprintf just prints a line of asterix’s so it is easy to
visually separate the next set of trade data.

If you run the code above you will note that the debug log window appears within the Vitamin-C window
along with all of the debug data written via the dprintf function..

If we focus on the exit date of 23-04-2007 you can see that all of the preceding bars before the last bar fall
below the profit threshold of 5%, and the last bar is indeed the one.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 53
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

=

Clear Log Append Save Debug
438 Date=20070410, Closing Price=10.336992, Profit=3.567386 -:J

440 Date=20070411, Closing Price=10.2214585, Profit=2.4107387
441 Date=20070412, Closing Price=10.240745, Profit=2.603665
442 Date=20070413, Closing Price=10.19%2621, Profit=2.121510
443 Date=20070416, Closing Price=10.346617, Profit=3.66441%
444 Date=20070417, Closing Price=10.279244, Profit=2.989401
445 Date=20070418, Closing Price=10.423615, Profit=4.435878
qagDore=2nnToaa ~loodpe Dedos—10 39774 Drofir= Jc1oa
444 Date=20070420, Closing Price=10.433240, Profit=4.532307
448 Date=20070423, Closing Price=10.558362, Profit=5.TE5925
445 R R R R R RO RV R R R R R R R R R R R TR R R R R R R e e
450 Date=20070430, Cpening Price=10.462114

451 Date=20070430, Closing Price=10.346617, Profitc=-1.1033&0

452 Date=20070501, Closing Price=10.375491, Profit=-0.827370

453 Date=20070502, Closing Price=10.481364, Profit=0.1839396&

454 Date=20070503, Closing Price=10.433240, Profit=-0.275980

455 Date=20070504, Closing Price=10.394741, Profitc=-0.643374

458 Date=20070507, Closing Price=10.336592, Profic=-1.1953:54

457 Date=20070508, Closing Price=10.279244, Profit=-1.747325

458 Date=2007TN05N9. Clnsing Price=10_317743. Prnfit=-1.379941

K I v

Spicing up the Profit Stop.

Out first attempt at the profit stop forced as to enter in at the opening price and exit when the closing price
exceeded a certain percentile profit threshold.

What happens if we want to an arbitrary price for the entry(reference) and exit(threshold) price ??

Lets modify the previous code to add this additional functionality. We need two more user arrays to hold
our entry and exit prices. We will use the User2 array for the entry or reference price and User3 array for
the exit or threshold price. The modifications are marked with grey background in the following code.

int ProfitStop(float PercentThreshold)
{

bool InTrade=false; // boolean variable used for trade flag
float EntryPrice=0; // variable used to store the entry price on trade entry
float ProfitThreshold; // variable used to hold the profit threshold price
for (int i=0;i<BarCount;i++) // loop for all bars
{
Result[i]=0; // initialize result for each bar
if (!InTrade && Userl[i]>0) // check if not in a trade and valid entry trigger
{
InTrade=true; // set the flag
EntryPrice=Open[i]; // set the entry price
// calculate the profit threshold price

ProfitThreshold=User2[i]* (1 + PercentThreshold/100);

Result[i]=1; // mark a valid entry condition
}
if (InTrade) // 1f in the trade do the check
{
if (User3[i] >= ProfitThreshold) // check for a profit stop condition
{
Result[i]+=2; // threshold reached so mark a valid exit condition
InTrade=false; // reset the flag
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 54

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

To call this from MetaStock we need to use the variant of the CallScript function that supports three array
parameters:

EntryTrigger:=(DayOfWeek ()=1) ;

EntryPrice:=Open; { entry or reference price }

ExitPrice:=Close; { exit or threshold price }

EncodedTrigger:=ExtFml("VitaminC.CallScript3",
"ProfitStop.c", { name of script file }

"ProfitStop(5)", { function name and profit threshold argument }

EntryTrigger, { User defined entry trigger }
EntryPrice, { User defined entry or reference price }
ExitPrice, { User defined exit or threshold price }
);

EncodedTrigger;

Handling the Short side of the Market

So far we have dealt with the situation of going long but what about situations where the trader wants to go
short ? We will modify our profit stop in the last section such that when a negative value of the
PercentThreshold is passed to the function then it assumes that we want to profit stop on the short side.
The modified code for this is as follows:

int ProfitStop(float PercentThreshold)
{
bool InTrade=false;
float EntryPrice=0;
float ProfitThreshold;

[\

for (int i=0;i<BarCount;i++) // loop for all bars
{
Result[i]=0; // 1 alize for each bar
if (!InTrade && Userl[i]>0) // check if not in a trade and valid entry trigger
{
InTrade=true; //
EntryPrice=Open[i]; // set e e price
// calculate the profit threshold price
ProfitThreshold=User2[i]* (1 + PercentThreshold/100);
Result[i]=1; // mark a valid entry condition
}
if (InTrade) // if in the trade do the check
{
if (_PercentThreshold >=0) // long side
{
if (User3[i] >= ProfitThreshold)) // check for a profit stop condition on the long
side
{
Result[i]+=2; // th old reached so mark a valid exit condition
InTrade=false; // reset the flag
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 55

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
}
}
else // short side
{
// check for a profit stop condition on the short side
if (User3[i] <= ProfitThreshold))
{
Result[i]+=2; // threshold reached so mark a valid exit condition
InTrade=false; // r t the flag

We shall call this function from MetaStock to check for 5% profit stops on the short side.

EntryTrigger:=(DayOfWeek ()=1) ;
EntryPrice:=Open; { entry or reference price }

ExitPrice:=Close; { exit or threshold price }

EncodedTrigger:=ExtFml("VitaminC.CallScript3",
"ProfitStop.c", { name of script file }

"ProfitStop(-5)", { function name and profit threshold argument (5% on the
short side) }

EntryTrigger, { User defined entry trigger }
EntryPrice, { User defined entry or reference price }
ExitPrice, { User defined exit or threshold price }
)
EncodedTrigger;
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 56

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Building a Trailing Stop function with Vitamin-C

In this section we plan to build a trailing stop function using Vitamin-C. In fact we plan on duplicating the
functionality of the Fast Trailing Stop function built into the TradeSim/MetaStock plugin. In this way you
will be able to customize or modify it to the way you want it. Details of the Fast Trailing Stop can be found
in the TradeSim document library that is installed with TradeSim or available from the ‘Articles’ section of
our website.

http://www.compuvision.com.au/Articles.htm

We digress a bit here and to familiarize ourselves with the TradeSim trailing stop function.

The TradeSim Trailing Stop Function Description

The external trailing stop function available in the TradeSim plugin to MetaStock has the following syntax:

ExtFml ("TradeSim.TrailingStop", { 1. Name of external function }
Mode, { 2. Mode}
TradePosition, { 3. Trade Position Type }
VolatilityFunction, { 4. Volatility Function Array }
RefPoint { 5. Reference Point Array }
ThresholdPoint { 6. Threshold Point Array }
};
Parameter Description Allowable Values
The name of the external function along "TradeSim.TrailingStop "
1 with the name of the external DLL that
contains it
The Mode parameter determines whether | BAND — displays a Trailing Stop band
2 the function is used to generate a trailing | indicator.
stop band indicator or a binary stop TRIGGER — generates a binary trigger where
trigger function. a value of ‘1’ indicates a stop trigger.
The TradePosition parameter specifies LONG or SHORT
3 whether the trade is on the long or short
side.
The VolatilityFunction parameter is a user | For example 3*ATR(10) gives a 10 bar ATR
4 defined volatility function for determining | trailing stop with an average range constant
the type of trailing stop. of 3.
The RefPoint parameter determines the CLOSE, OPEN, HIGH, LOW or any arbitrary
point or price where the trailing stop is data array.
5 calculated. It is typically set to the closing
price however it could be set to HIGH for
the long side or to LOW for the short side.
The ThresholdPoint parameter determines | LOW, CLOSE, HIGH, or any arbitrary data
6 the point at which the stop band has been | array. Typically you would use LOW for the
breached and the the trailing stop band is | long side and HIGH for the side short side.
reset.
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 57

http://www.compuvision.com.au

http://www.compuvision.com.au/Articles.htm

Vitamin-C for Metastock

Version 1.0.1

Trailing Stop Algorithm on the Long Side

The following flowchart illustrates the algorithm used to compute the trailing stop on the long side.

Current Bar

:

Previous Stop =

.. — Next Bar
Infinity
Stop = Reference - Previous Stop =
Volatili - P €
olatility Stop
Threshold <= Band = Stop,
Previous Stop ? Yes Trigger =1
No
Stop > Previous _
Stop 2 Yes—» Band = Stop
No i
A 4
Band = Previous Triager = 0
4> — I
Stop 99
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 58

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Trailing Stop Algorithm on the Short Side

The following flowchart illustrates the algorithm used to compute the trailing stop on the short side.

Current Bar

'

Previous Stop =0 — Next Bar
Stop = Reference + Previous Stop =
© « P= e,
Volatility Stop
= Band = Stop,
Thrgshold > Yes | P
Previous Stop ? Trigger = 1
No
Stop < Previous —
Stop 2 Yes Band = Stop
No i
h 4
Band = Previous Triager = 0
e — - |
Stop 99
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 59

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

In Vitamin-C the calling convention in MetaStock would be re-written as follows:

ExtFml ("VitaminC.CallScript3", { 1. Name of external function }

"TrailStop.c" { 2. name of script file }
"TrailingStop (_Mode, Position)" { 3. function name and parameters }
VolatilityFunction, { 4. Volatility Function Array }
RefPoint { 5. Reference Point Array }
ThresholdPoint { 6. Threshold Point Array }

}i

With some slight modifications, the Vitamin-C script used to implement the Trailing Stop below is
essentially the same code we used to code the Trailing Stop in the TradeSim.DLL plug-in. This is one of
the advantages of conforming to a code standard such as ‘C’. It more or less guarantees portability between
different platforms. In this case we were able to take code that was written for a DLL using the Borland
C++ environment and port it across to run under Vitamin-C.

enum ModeEnum {
BAND,

TRIGGER

bi

enum PositionEnum {
LONG,
SHORT
bi

void TrailingStop (ModeEnum Mode, PositionEnum _Position)
{

float Band=0;

float Prev=0;

float Stop;

if (_Position==SHORT)
Prev=1000000; // need this to initialize properly for short condition

for (int i=0;i<BarCount;i++)
{
if (_ Position==LONG) // Long Side
{
Stop=User2[i]-Userl[i];
if (User3[i]<=Prev)

{

Band=Stop;

if (_Mode==BAND) // Band
Result[i]=Band;

else // Trigger

Result[i]=1;
}

else
{
if (Stop>Prev) // check for n
Band=Stop; // move the > band
else
Band=Prev; // keep it the same as before
if (Mode==BAND) // Band
Result[i]=Band;
else // Trigger
Result[i]=0;
}
}
else // Short side
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 60

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
{
Stop=User2[i]+Userl[i];
if (User3[i]>=Prev)
{
Band=Stop;
if (_Mode==BAND) // Band
Result[i]=Band;
else // Trigger
Result[i]=1;
}
else
{
if (Stop<Prev) // check for new low
Band=Stop; // move the t ling stop band
else
Band=Prev; // keep it the same as before
if (_Mode==BAND) // Band
Result[i]=Band;
else // Trigger

Result[i]=0;
}
}

Prev=Band;

Running the Vitamin-C Trailing Stop code

The following MetaStock code was used to create an indicator, which displays a trailing stop band on the
short side. This is essentially the same code used to call the Trailing Stop in the TradeSim(DLL) plug-in
except for the first line where TradeSim is replaced with VitaminC.

ExtFml ("VitaminC.CallScript3",

"TrailingStop.c",

"TrailingStop (BAND,LONG) ",

3*ATR(10),

CLOSE,

LOW) ;

We overlayed this indicator directly on top of an existing chart to illustrate the trailing stop band function
correctly. We also created the same indicator using the TrailingStop function built into the TradeSim plug-
in library and added this on top of the bar chart. As you can see the two indicators are identical.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 61
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
10l
Fie Edit View Insert Format Tools Window Help -7 =l
J 0= H|§|ﬁ| & E| ﬂ‘-&:} @”TradeEilm-FastTralImgStopj‘ 8 2 M f s M g‘k‘_}
,: mm TradeSim - Fast Trailing Stop o =]
R
E 754 F 75
.
_ 7.0)
| 6.5 65
N
B
PN] 1,
':/Z 8.0 | l“l I{U{H”J‘n to 2.0
1t }1 Ly
=] [hﬂ‘ i]
7.5 0 1}1 7.5
1 v altll
= 704 | ! { Hy il nmlmm F 70
e] - l"'”“}m“pi [T I;{’ 1 ‘1;“ ¥ :
yZ] i T o
me| 857 lln - 65
] b P]
1 el it
6.0 g LAY
m Volume =13
40000 40000
30000 ~ 20000
20000 20000
10000 — 10000
xioog] x1500]
2005 [August September October Movember December 2006 February March
Rl A ER IR
J I LI “ LI |J A =t Double dick to locate this line in the Edibor|
| i I =] [interbank P
For Help, press F1 l_ 1:48 IT A
Exercise

As an Exercise change the MetaStock code to display both the long and short trailing stop bands. You need
to add the following code to the indicator in addition to the existing code for the long band.

ExtFml ("VitaminC.CallScript3",

"TrailingStop.c",

"TrailingStop (BAND, SHORT) ",

3*ATR (10) ,

CLOSE,

HIGH) ;

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 62
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

JRT=IE
Fie Edit View Insert Format Tools Window Help -7 =l
J 0O = n|§m| & E|K‘J‘€} @”TradeSlm-FastTralhngStopj‘ 8 2 M f s M Q_D\R?
— w AMP Vitamin- (4.65804, 5.21948 EIEY
W 8.5 - 85
[+ &a o84
— 8.3 F 83
S 8.2 - 82
8.1 - 81
— 8.0] l I }]111“ 1},1, 20
I 72 [1 T ! E 78
7.8 lnll il F 78
| 77 dpa EoT7
76 I { Eo76
4 7 i -7
7 ! il E 7
=) 72 H‘ d 72
71 |
£ 70 e ‘{Tm HH” }}Hi”‘“h” 70
== 6.9] i 6.9
”” Eg }Ill “h”illll I {lhlul qh}ﬂu lrl i , Ll : gg
LY Y I ! “ “ U F 66
Al ! o
£l B gl =
» ¥ [»
e R Eoo6d
—| 80" F 60
59 F 5.9
5.8 - 5.8
m Volume k =13
40000 @ = 40000
35000 - 35000
30000 - 30000
25000 - 25000
20000 = 20000
15000 = 15000
10000 =— 10000
10000 x1002)00
2005 [August September October Movember December 2006 February March
| rep|terca@larB
J I L”I LI |J L J sl s @838 Double dick to locate this line in the Edibor|
J lAMF‘ || d”lnlarbanKFX j| Trads | |
Volume l_ 1:54 ITI_ i
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 63

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Implementing Moving Averages with Vitamin-C

If you have coded some systems or indicators with the MS formula language then you will most likely be
familiar with the moving average formula, which is described in the online help as:

SYNTAX mov(DATA ARRAY, PERIODS, METHOD)

FUNCTION Calculates a PERIODS moving average of DATA ARRAY using
METHOD calculation method.

Valid methods are EXPONENTIAL, SIMPLE, TIMESERIES, TRIANGULAR,
WEIGHTED, VARIABLE, AND VOLUMEADJUSTED (these can be abbreviated as E,
S, T, TRI, W, VAR, and VOL).

EXAMPLE The formula "mov(CLOSE, 25, EXPONENTIAL)" returns the value
of a 25-period exponential moving average of the closing prices.

If we were to write our own moving average function with Vitamin-C script how would we do this ? Before
we answer this we need to digress and talk a bit about lagging functions. These are functions, which do not
produce a valid result until a number of bars of data have been processed. For example the simple moving
average does not produce a valid result until it has processed the number of bars represented by its period.
To prove this, open up a chart with MetaStock and add the Simple Moving Average Indicator with a period
of 10 bars. As you can see the moving average doesn’t plot values until the 10™ bar.

+MetaStock - [AMP LIMITED ORDINARY] = Ellil
Fi\e Edit View Insert Format Tools Window Help = 5'5‘

|DEE &Sl 5B $@|[EviamnCsiiTes |8 & fu £ 5 K2

[l
]
.,
|
N m AMP LIMITED ORDINARY I=1E3
ﬂ 106 106
—| s] ** L 105
2| 104 - -_._:‘y:'—# * 104
== | 1031 :'l:* . - 103
il 1024 - 102
7 1014 0o 1 2 3 4 5 6 7 8 9 * L o4
Z| o -q:ﬁ -
| o] . e
9.8 - a8
-anu = I=1E3
10000 10000
5000—: ‘ - 5000
o | L ‘ I O ‘ | ‘ \ e
[M0 M1 M2 M3 s M7 Me Mo a0 Jza a4 Tas o o7 30 w1 M 2]
2007 |August
Y DRI - IR -]
I =] ~l|| BEReEEe |2 s m @ E 56 |
J lAMF' || j”lntarhankFX j| Trads | |
For Help, press F1 [hms [$ [2
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 64

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

What happens is that MetaStock knows that the SMA does not produce a valid response until the 10th bar
so instead of displaying the bogus data, it actually suppresses it so that it is not displayed or used in any
future computations. But how can we achieve the same thing with Vitamin-C ? The solution to this comes
about because each Vitamin-C Array class object has a pair of member functions which control the first and
last valid indexes for the array so it is just a matter of calling the Array::SetFirstindex() function for lagging
functions and Array::SetLastIndex() for leading functions. To illustrate the use of these functions lets start
with the code for a simple moving average.

The Simple Moving Average (SMA)

First lets take a look at how the simple moving average (SMA) is computed. The simple moving average
just calculates a running average of the last Nbars of data for each bar on the chart. It does this by summing
the last Nbars of data and dividing by the number of bars. However it can only do this when there is more
than Nbars worth of data to process. For example a 4 bar moving average will not be able to compute valid
data until the fourth bar (bar=3) as in the following example:

Index — 0 1 2 3 4 5 6 7 8 9

Price | 1021 | 10.31 | 1045 | 10.15 | 9.87 | 991 | 989 | 10.01 | 10.05 | 10.10
£(i-3..i)) | - | - | - [4112 | 4078 | 40.38 | 39.82 | 39.68 | 39.86 | 40.05
SMAM@4) | - | - | -] 1028 [10.195] 10.095 | 9.955 | 9.92 | 9.965 | 10.0125

To calculate the simple moving average we use two for-loops to do this. The outer loop (iterator-i) iterates
through each bar in the chart whilst the inner loop (iterator-j) computes the average of Nbars for each value
of iterator-i. The code for this is shown below:

void SMA (int Nbars)
{
if (Nbars<2) // check for invalid periods less than 2
ReportError ("Period (%d) is less than 2", Nbars);
double sum; // st

on variable (double precision)

for (int i=0;i<BarCount;i++) // loop for all bars
{
sum=0;
for (int j=0;j< Nbars;j++)
sum+=Userl[i-J];
Result[i]=sum/ Nbars; // compute the average

}

he data for last N bars

Result.SetFirstIndex (Nbars-1); // adjust for the lag
}

We save this code in a file called SMA.c and use the following indicator code to call it from MetaStock. In
this example we wish to calculate a 10 bar SMA on the closing price.

ExtFml ("VitaminC.CallScriptl",

"SMA.c", { name of script file }
"SMA (10) ", { function name and SMA parameter }
CLOSE) ; { data array }

In the following screen shot we have displayed both the Vitamin-C SMA and the MetaStock indicator
configured with the same parameters. As you can see they are both identical with the same lag of 10 bars.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 65
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
JRL=T]
Fie Edit View Insert Format Tools Window Help -7 =l
|O=sEd R & B> & Q|[@iamnc-smtest |8 & fu £ 5 # W2
E ' Vitamin-C - SMA Test
4| 108 F 105
T 100 F 100
T mm Moving Average o =]
3| 108 105
ﬂ 10.0 E 100
P (= AriP LTMTTED ORDINARY Blx]
2| 1104 i F o110
=] o Oy b |
] tmt *1-+|:|
; 105 g SOt TD + 4 . 105
U270, e ey n ot gyt LTI
| 1007 +47T 1Ll =L 00
% E L i il
Bl a5 * F a5
9.0 F oo
15000—; 15000
10000—2 ‘ ‘ ‘ ‘ E 10000
smoé E 5000
Food 3 |||‘||.\||\|‘|\ MH | ‘IM il HI. m |‘ ||‘||‘ il |\‘||| |\|‘H‘ i
E 16 23 [zo] s 13 20 27 3 10 17 J2a 1 B [15 22 |29 5 12
2007 August September |Oc10ber Maovember
LY dsp[trea|qra
I =] =l|| BEGEEEEE- || oo mm BB E|
J lAMF‘ || d”lnlarbanKFX j| Trade ||
Volume l_ 140 ITI_ &
Improving the SMA

Is it possible to improve on the SMA algorithm used in the preceding example of the SMA code ? As it
stands there appears to be a lot of redundant computation each time the average is calculated. If we observe
the algorithm to compute the SMA more closely you should note that for each bar in the chart an Nbar
SMA uses the same bar in the calculation of the SMA, Nbar times.

In fact for an Mbar=1000 bar chart, and a Nbar=100 bar SMA, this would require MxN or 1000x100 =
100,000 computations. For an indicator overlaid on a single chart this may not be a big deal but for an
exploration containing 100’s if not 1000’s of securities as well as multiple calls to the SMA this will add up
in terms of computational time.

Taking advantage of this redundancy means that we only have to subtract the first bar and add the new bar
to an existing summation each time we need to calculate the new summation. This replaces the Nbar
summation with just a 2 bar summation so the MxN computation now only requires Mx2 computations
which is a massive savings in computational time for large SMA periods !!

The code to do this is shown below. As you can see it is much simpler requiring one main loop to iterate
through all of the bars !!

void SMA Faster (int Nbars)
{

if (Nbars<2) // check for invalid periods less than 2
ReportError ("Period (%d) is less than 2", Nbars);

double sum=0; // summation variable (double precision)
for (int i=0;i<BarCount;i++) // loop for all bars
{
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 66

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
sum+=Userl[i]-Userl[i- Nbars]; // calculate the new summation
Result[i]=sum/ Nbars; // compute the new average

}
Result.SetFirstIndex(Nbars-1); // adjust for the lag

}

We use the following indicator code to call the new function with the same parameters as we used
previously. Now we can overlay all three versions on the same bar chart. As you can see they are all
identical to each other !!

ExtFml ("VitaminC.CallScriptl",

"SMA.c", { name of script file }

"SMA Faster (10)", { function name and SMA parameter }

CLOSE) ; { data array }
ol
Fie Edit View Insert Format Tools Window Help -7 =l
J = | = Iﬁ| & E| el ‘ £ &, ||Vllamm-E-SMAFasterVersuj‘ (PR T S R ‘ n?
,: mm Vitamin-C - SMA Faster Version o =]
ke
10.5 E 105
[
—| 100 F 100
~0 01 B
N | Vitamin-C - SMA Test o =i
| 10.5 E 105
= 100 E 100
ﬂ m Moving Average o =]
= | 108 F 108
m
& | 100 F 100
Gl [AMP LIMITED ORDINARY ol =i
11.0 Eo110
L
-DEI [nl3] D !*
& il hmt *-\-‘H:l
10.5 Jo PO T + ‘d] [1) L 405
Bt g Ij]* HD.?D-{-D i lTﬁ'i & + -+D*'ﬁf"'-$$+l$f 0
10.0 +dT =Tyl ¢ 100
.. lf.' i il
a5 “ F 95
a0 F oo
15000 E 15000
100[1[1—; ‘ ‘ ‘ ‘ ‘ ‘ 10000
reood” 4 |||I|.\||\|‘|\‘|I|M‘|| |I“||||‘|| ||||||‘|||||‘||\.|||\‘||||\|‘|\|||.I‘|||7x1i@900
E 16 23 [zo] s [13 20 27 3 0 17 |24 0 B [15 22 Jma | |5 12
2007 August September |Oc10ber Maovember
L] I et rea|arD
I =l o | EEEEEE | e s w@EEE |
J lAMF‘ || d”lnlarbanKFX j| Trads | |
For Help, press F1 l_ 2:01 ITI_ i
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 67

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

The Exponential Moving Average

Next we come to the exponential moving average (EMA), which is used a lot in technical analysis. From an
engineering perspective the EMA is a form of an Infinite Impulse Response discrete time filter. Without
getting to technical what this means from a layman’s perspective is that each value of the EMA contains
information from the past values all of the way back to the beginning of the time series, albeit as time goes
back the contribution to the current value diminishes. The consequences of this from a computational point
of view is that to calculate the EMA for the current bar requires a portion of the previous bars EMA value.

From Alexander Elder’s book “Trading for a living” the EMA is computed as follows:

EMAtod = Ptod *K+ EMAyest*(l'K)

where, K= 2/(N+1)
N is the number of days in the EMA
Pwa= today’s price
EMA, .t = the EMA of yesterday

Now lets code this using Vitamin-C:
void EMA (int Nbar)
{

double K=2.0/(Nbar+l);

for (int i=0;i<BarCount;i++) // loop for all bars
Result[i]=Userl[i]*K+Result[i-1]*(1-K);

Result.SetFirstIndex (Nbar-1); // adjust for lag
}

We use the following indicator code to call the new function whilst overlaying the built in moving average
indicator on the same chart to check if we are generating the correct values.

ExtFml ("VitaminC.CallScriptl",

"EMA.c", { name of script file }
"EMA (10) ", { function name and SMA parameter }
CLOSE) ; { data array }

As you can see both look identical except at the start where the two diverge. This is highlighted by the
dashed purple circle so lets zoom in and have a closer look at what’s going on !

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 68
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
ol
Fi\e Edit View Insert Format Tools Window Help -7 =l

|DeRIaR s BR|o &A@t rs ~| & & /i £ 5 # = K2

mm Vitamin-C - EMA Test

Ik F
- 10
& E s
o - g
~ S
— - i
- 5
| o
N
W’U’i i 10
4 >| g g' anns® r a
—L P Fo8
= 77 r 7
(il * [i]
£ 5 - 5
= 4 E 4
il
L 11 PRI § r 1"
Tt e ™ !
< 107 ‘ ‘\‘a‘"lf"lr i "l'!u‘l!.f!uﬂtlﬂ‘l.‘i..u 10
£ 7 '|1 iy A o0
ggg 8- f‘ ‘!,I“"'I Ill.l l'“‘“‘"ﬂ“"!« P 1 r 8
—] ul'y, we l. L
77 e lJluml.J‘« LU T L 7
67 Lot ‘ ﬁ"‘l‘l I P [6
1 T e, LTI | ot
5] L Y 1'..-<L.,.h1.' ":Mm {ut oI, e 5
4 W = 4
m Volume =13
20000 20000
10000 — — 10000
ES 1000
2007 Sep |Dct [Mov |Dec |2008 Mar |Apr |May [Jun [Jul [Aug [Sep [Oct |Mov [Dec |2009 Mar |Apr |May |Jun [Ju
o Hep|treearD
O]
I = o | EEEEEE | e s w@EEE |
J lAMF‘ || d Hlnlarbank F= j| Trads | |
For Help, press F1 [[[l_ 2:29 IT A

In the next screen shot I have merged the two indicators to see where the discrepancies are. It’s only within
the first 20 bars that there is significant error. This is due to the fact the Vitamin-C environment does not
have access to data before the start of the chart so this causes some errors due to the windowing or
truncating of the data. As shown the in the next screen shot after 30 bars the error approaches negligible
levels and by the end of the chart the error is well within the numeric precision of 32 bit floating point
numbers used to represent price data.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 69
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
ol
Fi\e Edit View Insert Format Tools Window Help -7 =l
DR &SR % BE| | $ & |[Eviamnc Ema e Fll @ 2 s ks #hm N

m Moving Average Vitamin-C - EMA Test ol =i

%= | 7|+

Sl =

11.0 110

a - 30 bars - "= Ciy 0
[= L 0 i e e a B
105 ++ T + 10.5
g T T g ﬂ¢ D¢D+D LI -T+¢*+$¢
=k + L
10,0 FoTgtT - .-.-—. DI}H’ + 10.0
9.5 ‘T* F 95
9.0 F 90
15000 15000
10000 3 ‘ ‘ E 10000
GEME ||\||||||\‘||‘I||‘|‘I\‘ bttt e
9 [16 |23 [30 [6 [13 [20 7 3 10 17 [24 [B
2007 August September |Oc10ber
L o[t rea|qra
I =0 = |
| i I =] [interbank P
For Help, press F1 | | | I_Z:ZB ITI_ A

We can improve this situation somewhat by using the first value of the data array that we want to smooth as
an approximation to the EMA for the first bar (don’t confuse this with the first bar of the EMA displayed
on the chart). Lets change the code to do this:-

void EMA (int Nbars)
{
if (Nbars<2) // check for invalid periods less than 2
ReportError ("Period (%d) is less than 2", Nbars);

double K=2.0/(_Nbars+l);
float lastvalue=Userl[0]; // kludge to compensate for no bars before first bar
float newvalue;

for (int i=0;i<BarCount;i++) // loop for all bars
{
newvalue=Userl[i] *K+lastvalue* (1-K);
Result[i]=newvalue;
lastvalue=newvalue;

}

Result.SetFirstIndex (Nbars-1); // adjust for lag
In the indicator code we have also added the MSFL equivalent of an EMA whicj will be overlayed on top
of the Vitamin-C EMA.

Mov(C,10,E); { MSFL EMA }

ExtFml ("VitaminC.CallScriptl",

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 70
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
"EMA.c", { name of script file }
"EMA (10) ", { function name and parameter }

CLOSE) ; { data array }

As you can see the two EMA’s overlayed on top of each other are indistinguishable from one another, the
only hint that both exist on the same chart is the popup hint box displaying both values as being identical.

: MetaStock - [AMP LIMITED ORDINARY] 5.92000 {-0.10000) =] 3
File Edit View Insert Format Tools Window Help ;Iilﬁl

| DB &SR| % EE| | ¢ @R [[Evienns AT Flla % A s #ha N

m Vitamin-C - EMA Test

s

4L

N F 10.65
— E 10,60
| [1055

b E 1050

% 1045

1 15N

= Vitamin-C - EMA Test| F 10,40

A Date: 14/09/2007

“ Value: 10.48384 = 10.35

V-l [AMP LIMITED ORDINARY

LN
_ﬂ
S

108
+ f’] - * F 105
LT e TR
- 102
—'— - 101
~ 100
15000
I 10000
[~ 5000
TN T =

E S S AN 2 A S A L A - N >

2007 |October

ST I DEEIEER-E- IR =
I =l - = TN == = | I | P = [
Vitamin-C - EMA Test [14/05/2007 | ar7 [231 [$§[
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 71

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Porting Code from other Charting Platforms to Vitamin-
C

It is possible to utilize code written for other charting platforms provided that the code closely resembles
the C++ standard and doesn’t use system dependent calls. For example, whilst the Amibroker Formula
Language (AFL) is not industry standard C++ code, it shares some similarities, so much so that it is
possible to port some examples across to the Vitamin-C environment. This is only possible if the code does
not reference vendor specific functions such as charting functions. In the following sections we provide two
examples on how to port code from Amibroker.

Example 1: Adaptive Moving Average (AMA)

Developed by Perry Kaufmann, this indicator is an EMA (exponential moving average) using an Efficiency
Ratio to modify the smoothing constant, which ranges from a minimum of fast length to a maximum of
slow length.

The Amibroker website describes an Adaptive Moving Average function which takes two user array
arguments. The first argument is the data array that you want to smooth and the second argument is the
smoothing factor array, which is normally a constant value in other moving averages.

output = AMA(input, factor)
is equivalent to the following looping code:

for(i = 1; i < BarCount; i++)
{

output[i] = factor[i] * input[i] + (1 - factor[1]) * output[i -1];
}

Rewriting this in Vitamin-C is fairly straightforward:

void AMA ()
{ for (int i=1;i<BarCount;i++) // loop for all bars
{ Result[i] = User2[i] * Userl[i] + (1 - User2[i]) * Result[i-11];
}
Result.SetFirstIndex (1) ; // ignore the first bar at the very minimum

}
The AFL code example converted to MetaStock code is:

fast :

2/ (2+1) ;
2/(30+1) ;

slow :
dir:=Abs (CLOSE-Ref (CLOSE,-10)) ;
volatility:=Sum(Abs (CLOSE-Ref (CLOSE,-1)),10) ;
ER:=dir/volatility;

sc:=Power (ER* (fast-slow)+slow,2) ;

ExtFml ("VitaminC.CallScript2",

"AMA.c", { name of script file }

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 72
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
"AMA ()", { function name and optional parameters }
CLOSE, { Userl data array }
sc) ; { User2 data array }

The following screen shot shows the indicator above overlaid on a chart.

MetaStock - [AMP LIMITED ORDINARY] 5.92000 (-0.10000) ;Iglil

File Edit View Insert Format Tools Window Help ;Iilﬂ

7] Vitamin C - A& a2 s ks 64 @a|n

H AMP LIMITED ORDINARY Vitamin-C - AMA EE

|DzlaRlsmel- ¢ Rl

E 115
E 110
E 1058
E 100
E 95
9.0
85
8.0
758
7.0
E 65
E 60
E 55
F 50
E 45
E 40
E 35
E 30
25
F 20
E 15
E 10

1+,
Lote -H--‘-DE*‘A-DD 1‘1-_ N it
et T*a...w b "'r*lé"'_,.ﬂ”‘ e

e,
h W)

Error ?

F- 20000
15000
F- 10000

=200

] e—

| .|||\‘||I||\.|.|.|I‘||\|| Ll ||.|\|.|||I||||.||||||‘.. ull H“ MH A HI\ 1l
10 17 |24 1 8 [15 |22 [29] |5 [12 19 o6 [3 o |17 [7 |14 [4 11 e fes 3 J1o [i7lesz |7

2007 |October November December |2008 February March [April

4 | DR IR

| = = |J - || oo @m B BB |J [emP] =] {[interbank P =|L Tade ||

[=i
o ——

|I|||||
14 |21

EEEEEEEC

For Help, press F1 [[[l_ 2:38 ,T l_ v

As you can see we still have a problem with the windowing or truncation of data causing errors at the start
of the AMA. We can solve this in a similar way that we solved it for the EMA example in the previous
section by using the first value of the data array we wish to smooth as the first value of the AMA. The
modified code to do this is as follows:

void AMA ()
{

float lastvalue=Userl[0]; // kludge to compensate for no bars before first
bar

float newvalue;

for (int i=1;i<BarCount;i++) // loop for all bars

{

// AFL code output[i] = factor[i] * input[i] + (1 - factor[i]) * output[i-1];
newvalue = User2[i] * Userl[i] + (1 - User2[i]) * lastvalue;
Result[i]=newvalue;

lastvalue=newvalue;

}

Result.SetFirstIndex (1) ; // ignore the first bar at the very minimum

}

As you can see in the next screen shot the problem has been solved.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 73
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
o x|
File Edit View Insert Format Tools Window Help =& x|
| DS (&R 4 BB o[& @ I[[FEviennt-ama Clla 2 s ks #h e we
] [AP LIMITED ORDINARY Vitamin-C - AMA EE
N o R A
i i F 110
b TD.EF W'DUH[P L it E 105
n i Y g
3 F 100
J_.| F o5
&
P F 90
Ll F a5
e L
i
ks E 75
£ '|h x
’rﬁj IHD 70
F 65
20000
15000
i Ll
RO A e e e
3 [0 17 Je4 [+ 8 15 Je2 J2o[Js [12 T1o0 J26 3 [10 J17 [e4] 7 [14 [o1 [20]]¢ 11 J18 25 [3 [10 17 fes2a 7 14 21
2007 |O[:lut]er November December |EDDE February March |Apri|
_ 4 | denjteoalarm
| = =l |J R === = |J [erp I = |[interbank ¢ | e ||
Volume [[[[=2 [$[4
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 74

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Example 2: The Guppy Count back Line Trailing Stop Indicator

In the document “Looping in Amibroker AFL” is described a function which computes the Guppy Count
back Line and a Trailing Stop. The AFL function to compute the Guppy count back line like is described in
the document as:

function Cbl (bars) // Function definition
{
cblArr = Null; // Initialise CBL array with nulls
if (bars > 0) // Number of bars = 0 is invalid
{
for (i = 1; 1 < BarCount; i++) // Loop over all bars excluding first one
{
steps = bars - 1; // Number of steps back is bars-1
mostLow = Low[i]; // Start with low of current bar as lowest
for (j = i-1; j >= 0 && steps > 0; j--) // Loop backwards over all
{ // ... previous bars or until steps = 0
if (Low[j] < mostLow) // If this bar is lower than current lowest
{
mostLow = Low[]]; // Set this low as new lowest
steps--; // Decrement number of steps remaining
} // End of if statement
} // End of inner for loop using 'j'
cblArr[i] = mostLow; // CBL is the lowest low after steps back
} // End of outer for loop using 'i'
} // End of if (bars > 0)
return cblArr; // Return CBL array to caller
} // End of function

The AFL function to compute the Trailing Stop is:

function TrailingStop (data) // Passed array has data for trailing stop
{
stop[0] = datal[0]; // Set first bar's stop value
for (i = 1; i1 < BarCount; i++) // Loop through all other bars
{
if (Close[i] >= stopl[i-1]) // If not stopped out yet
stop[i] = Max(datal[il]l, stopl[i-11); // Set stop level for this bar
else // Else if is stopped out now
stop[i] = datali]; // Reset to current value of stop data
} // End of for loop
return stop; // Return trailing stop array
} // End of function

The code was modified so that it conforms to the C++ standard and the equivalent code re-written for
Vitamin-C. As you can see it is very similar to the original except that it now conforms to the C++
standard.

Array CBL(int bars) // Function definition
{
Array cblArr; // are CBL array
if (bars > 0) 1 ber of bars 0 is invalid
{
for (int i = 1; 1 < BarCount; i++) // Loop over all bars excluding first one
{
int steps = bars - 1; // 1
float mostLow = Low[i]; // rrent bar as lowest
for (int j = i-1; j >= 0 && steps > 0; j--) // Loop backwards over all
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 75

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
{ // ... previous bars or until steps = 0
if (Low[j] < mostLow) // If this bar is lower than current lowest
{
mostLow = Low[j]; // Set this low as new lowest
steps--; // Decrement number of steps remaining
} // End of 1f statement
} // End of inner for loop using 'j'
cblArr[i] = mostLow; // CBL is the lowest low after steps back
} // End of outer for loop using 'i'
} // End of if (bars > 0)
cblArr.SetFirstIndex (1) ;
return cblArr; // Return CBL array to caller
}
Array TrailingStop (Array data) // Passed array has data for trailing stop
{
Array stop; // declare stop array
stop[0] = datal0]; // Set first bar's stop value
for(int i = 1; i < BarCount; i++) // Loop through all other bars
{
if (Close[i] >= stopl[i-1]) // If not stopped out yet
stop[i] = data[i]l>stop[i-1l]?datal[i]:stopl[i-1]1; // Set stop level for this bar
else // Else if is stopped out now
stop[i] = datalil; // Reset to current value of stop data
} // End of for loop
stop.SetFirstIndex (1) ;
return stop; // Return trailing stop array
}
void CBLTrailingStop (int bars) // main calling function from MetaStock

{
Result=TrailingStop (CBL (bars)) ;

}

To call the Guppy Count Back Line Trailing Stop function from MetaStock the following indicator code is
used:

ExtFml ("VitaminC.CallScript",
"GuppyCBL.c", { name of script file }

"CBLTrailingStop(3)") ; { function name and parameter }

Shown in the screen shot below is the Guppy Count Back Line Trailing Stop overlaid on a chart.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 76
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
ol
File Edit View Insert Format Tools Window Help ;lilil
J D E &SR & ’ o & @”Vllamln-E-GuppyEBLTestj‘ B2 /i s w2
[(485000, 4:86000, 4:62000, 486000, 0:06000) 171 = =11 w1~ (4:60000)00 D el =]
e 1114 F o114
Tt 1101 F 110
| 1094 10.9
— | 108+ 108
|| 107 107
38| 1064 10.6
—| 105 105
j_'l 10.4 104
== 103+ 10.3
@ g2 102
£ 101 10.1
=100 10.0
M ge- 99
| e 93
Z| o7 a7
me| 961 96
—1 959 95
9.4 94
93 93
9.2 92
9.1 a1
9.0 9.0
89 Y
13 20 27 3 10 17 24 1 5 15 22 29 5
| |September |October [Movember
_ FmE dsp|trea|qra
I =l || BEEREEEd- || sls W@ B AE |
J lAMF‘ || d HInlarbanKFX j| Trade | |
For Help, press F1 I_WITI_ i
Mission accomplished!! ©
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 77

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Multi Dimensional basic arrays in Vitamin-C

You’ve already been introduced to the special Array Class in earlier sections, which are used to create,
manipulate or access the existing price data arrays from MetaStock. This particular class wraps a layer
around a standard single dimensional array of floating point numbers and is essentially the only type of
array that you will need to deal with. However seasoned C++ programmers know that you can construct
arrays in C++ out of any data types including fundamental, structure and class objects. To use arrays you
first need to declare them.

Basic Array Declarations

In C and C++ it is possible to have any dimension array, however any array dimension above two may not
have any practical use as far as technical analysis applications are concerned. In the following we list some
of the more basic array declarations.

Single Dimensional Arrays

Single dimension arrays can be declared as follows where size is an integer type:

| type var-name[size];

A 1-D array can be visualized as a line structure where the size represents the length of the line.

O Examples
int scores[10]; // array of 10 integers
float price[20]; // array of 20 floating point numbers
float price[]={1.26, 1.45, 1.33, 1.39}; // array of floats with
initialization
char name[80]; // array of 80 characters
char symbol[]="ANZ"; // array of characters automatically

// sized to fit the character string

Two Dimensional Arrays

Two-dimensional arrays can be declared as follows where size is an integer type:

type var-name[rows] [cols];

A 2-D array can be visualized as a flat square structure where the rows represent the side of the square and
the columns represent the length of the square.

Q Examples

int TwoDArray([20][10] // 2D array of integers 20 rows by 10 columns

Three Dimensional Arrays

Three-dimensional arrays can be declared as follows where size is an integer type:

| type var—-name[layers] [rows] [cols];

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 78
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

A 3-D array can be visualized as a cube structure where the layers represent the depth of the cube, rows
represent the height of the cube and the columns represent the width of the cube.

O Examples

float ThreeDArray[10]1[5]1[7]1; // 3D array of floats of 10 layers by 5 rows
by 7 columns

N-Dimension Arrays

In C++ you can declare N-dimensional arrays of objects, but for most purposes regarding trading
applications arrays above 3 dimensions are not really required. Having said that it is possible to visualize a
4™ dimension array as a line of cubes where the size of the 4™ dimension represents the length of the line.
Similarly a 5™ dimension array would be a 2-D array of cubes and a 6 dimension array would be
represented by a cube array of cubes etc

Q Examples
float FourDarray[20][10][5]11[7]; // 4-D array

float FiveDarray[30][20][10]([5]1[7]); // 5-D array

Using basic arrays in Vitamin-C
Using arrays in Vitamin-C is no different than using them in any other C++ environment. Please refer to
the C/C++ references at the back of this guide for more information on how to use them.

2-D basic array example

The following example demonstrates how to declare a 2-D array of integers, write values to it and then read
and display the values to the Debug Log.

#define COLS 10
#define ROWS 10
// this function displays the contents of a 2D array
void Display2Darray(int array2[][COLS])
{

// read values from the array

for (int row=0; row<ROWS; row++)

{

for (int co0l=0;col<COLS;col++)
dprintf ("Row=%d Column=%d value=%d\n", row,col, array2[row] [col]);

es into a 2D array and then calls another

void T
{
int array2[ROWS] [COLS];

ction to display
est2Darray ()

// write values into the array
int count=0;
for (int row=0; row<ROWS; row++)
{
for (int col=0;col<COLS;col++)
{

array2|[row] [col]=count;

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 79
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

count++;
}
}

Display2Darray(array2?) ;
}

The MetaStock Indicator code used to call this function is:

ExtFml ("VitaminC.CallScript",
"2DArray.c", { name of script file }

"Test2Darray () ") ; { function name and parameter }

Here are the results from the debug log:

_lojx

Clear Log Append Save Debug
1 IRD'I:-J'=C| Column=0 wvalue=0 “

Z Row=0 Column=1 wvalue=1
3 Row=0 Column=2 walue=2
4 Row=0 Column=3 wvalue=3
5 Row=0 Column=4 wvalue=4
& Row=0 Column=5 wvalue=5
7 Row=0 Column=6 wvalue=&
8 Row=0 Colunn=7 wvalue=7
9 FRow=0 Column=2 wvalue=3
10 |Row=0 Column=9% wvalue=35
11 |Row=1 Columnn=0 wvalue=10
12 Bow=1 Column=1 wvalue=11
13 |Bow=1 Columnn=2 wvalue=12
14 REow=1 Column=3 wvalue=13
15 Bow=1 Column=4 wvalue=14 -

K1 2y

3-D basic array example

The following example demonstrates how to declare a 3-D array of floating point numbers, write values to
it and then read and display the values to the debug log.

#define COLS 10
#define ROWS 10
#define LAYERS 10

// this function displays the contents of a 3D array of floating point numbers
void Display3Darray (float array3D[] [ROWS] [COLS])
{
// read values from the array
for (int layer=0;layer<LAYERS; layer++)
{
for (int row=0; row<ROWS; row++)
{
for (int co0l=0;col<COLS;col++)
dprintf ("Layer=%d Row=%d Column=%d
value=%$f\n", layer, row,col, (double) array3D[layer] [row] [col]);
}
}

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 80
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

// this function writes float values into a 2D array and then calls another
// function to display the values
void Test3Darray ()
{
float array3D[LAYERS] [ROWS] [COLS];

// write values into the array
int count=0;
for (int layer=0;layer<LAYERS;layer++)
{
for (int row=0; row<ROWS; row++)
{
for (int co0l=0;col<COLS;col++)
{
array3D[layer] [row] [col]=count;
count++;

}
}

Display3Darray (array3D) ;

The MetaStock Indicator code used to call this function is:

ExtFml ("VitaminC.CallScript",
"3DArray.c", { name of script file }

"Test3Darray()") ; { function name and parameter }

Here are the results from the Debug Log:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 81
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

_lojx

Clear Log Append Save Debug
1 ILayer=Cl Row=0 Column=0 wvalue=0.000000 il

2 Layer=0 Row=0 Column=1 wvalue=1.000000
2 Layer=0 Row=0 Column=2 wvalue=2.000000
4 Layer=0 Row=0 Column=3 wvalue=3.000000
5 Layer=0 Row=0 Column=4 wvalue=4.000000
8 Layer=0 Row=0 Column=5 wvalue=5.000000
7 Layer=0 Row=0 Column=& wvalue=6.000000
8 Layer=0 Row=0 Column=7 wvalue=7.000000
3 Layer=0 Row=0 Column=8 wvalue=8.000000
10 |Layer=0 Row=0 Column=% wvalue=9%.000000
11 Layer=0 Row=1l Column=0 wvalue=10.000000
12 |Layer=0 Row=1 Column=1 wvalue=11.000000
12 Layer=0 Row=1l Column=2 wvalue=12.000000
14 Layver=0 Row=1l Column=3 wvalue=13.000000
15 |Layer=0 Row=1 Column=4 wvalue=14.000000
16 Layer=0 Row=1l Column=5 wvalue=15.000000
17 Laver=0 Row=1l Column=& wvalue=16.000000
18 Layer=0 Row=1l Column=7 wvalue=17.000000
198 Layver=0 Row=1l Column=£8 wvalue=1E8.000000

20 | Layer=0 Row=1l Column=9% wvalue=195.000000
21 Layer=0 Row=2 Column=0 wvalue=Z20.000000
22 Laver=0 Row=2 Column=1 wvalue=21.000000
22 Layer=0 Row=2 Column=2 wvalue=22.000000
24 Layer=0 Row=2 Column=3 wvalue=23.000000
25 |Laver=0 Row=Z2 Column=4 wvalue=24.000000 bl

S0 W

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 82
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Using the Standard ‘C’ library from Vitamin-C

Most of the standard C-library functions are available from within the Vitamin-C environment. We shall
not discuss all of the functions as this is beyond the scope of this document and is better left to the texts on
‘C/C++’ in the reference section cited at the end of this User Guide. However we will illustrate a couple of
simple examples.

Transcendental Example

We shall use the transcendental trigonometric sine() function available from the standard ‘C’ library to plot
a sinewave on a chart. The Vitamin-C code to this is as follows:

#define PI 3.1415926

void Sinewave (void)

{
for (int i=0;i<BarCount;i++)
{
Result[i]=sin(i/ (2*PI)) ;
}

The MetaStock indicator code used to call the Vitamin-C script is as follows:

ExtFml ("VitaminC.CallScript",
"Sinewave.c", { name of script file }

"Sinewave()") ; { function name and parameter }

Placing the indicator on a chart yields the following results:

- MetaStock - [AMP LIMITED ORDINARY] 4.98000 (+0.07000) _I— _IEl ZI
File Edit View Insert Format Tools Window Help =
| D= E &R 4 B | @ & |[FVimnt - Snewave =@ 2 s 2 S dh | N2
,:

Ie]

+ 1

~ | 05 05

| 00 oo

z E

B 0.5 05
j__'l 1.0 -1.0
=

= T 110

FE | 105- Moty “ = 105

TN vy 2 et fanel g, = 100
— g g 3 ']r !'l - g.g

< | 8s- i = &5
£ | 53T R PV i ™ - 80

| 70- ! LR ;| ", | i = 73

65 - ! o mit M " | = s
60 - i ! "Jq It - 60
E L - =
gg, s Lol gt gl -\"““*tﬂl ,..Ul"w""'rl"“r"'a'r'“'-«-.‘ . E gg
45 - Lo - = 45
4.0 -) = 40
35 = 35
25000 - = 25000
20000 3 E- 20000
15000 E- 15000
10000 § E- 10000
| 1000 0 -x'-:)lx) 00
2007 |sep [oct [wov |Dec |2008 [Fen [war |apr |May [dun [Jul |Aug |Sep [oct |[Mov [Dec |2009 [Feb |mar [apr |May |ounm |Jul
= riep|t sca|[4 8
I = E | mmgpmEe- | 2 s @5 55 ||] =] [interoanks Pt =l reee ||
For Help, press F1 [[[[[[§ »
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 83

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

File IO example

The standard ‘C’ library provides a rich set of functions that enable file creation and manipulation. In this
example we will take the Profit Stop that we coded earlier and add some file handling routines that allow us
to write out the trade data to a file called “trades.csv”” which will be saved in the “c:\VitaminCScript
directory”. The modified code is shown below with the additions marked in grey background.

void ProfitStop(float PercentThreshold)
{

bool InTrade=false; // boolean variable used for trade flag

float EntryPrice=0; // variable used to store the entry price on trade
entry

float ProfitThreshold; // variable used to hold the profit threshold price

long EntryDateIndex; // entry date index

// open file ready for writing text data. You should
// specify a complete file path otherwise the file
// will be created in the MetaStock directory

FILE *fileptr=fopen ("C:\\VitaminCScript\\trades.csv","wt");

if (fileptr!=NULL) // check if successful open
{
// the following writes out the column headings to the file
fprintf (fileptr, "%4s,%12s,%12s,%12s,%12s\n",
" Sym" 0
"Entry Date",
"Entry Price",
"Exit Date",
"Exit Price");

for (int i=0;i<BarCount;i++) // loop for all bars
{ Result[i]=0; // initialize result for each bar
if (!InTrade && Userl[i]>0) // check if not in a trade and valid entry trigger
{ InTrade=true; // set the flag
EntryPrice=Open[i]; // set the entry price

// calculate the profit threshold price
ProfitThreshold=User2[i]* (1 + _PercentThreshold/lOO);
Result[i]=1; // mark a valid entry condition
EntryDatelIndex=i;
}

if (InTrade) // 1f in the trade do the check
{
if (User3[i] >= ProfitThreshold) // check for a profit stop condition
{
Result[i]+=2; // threshold reached so mark a valid exit condition
InTrade=false; // reset the flag

// the following writes out the data to the file
// with proper column formatting
fprintf (fileptr, "%4s,%12s,%12f,%12s,%12f\n",

GetSymbol (), // symbol
GetDateString (EntryDatelIndex), // Entry date
(double) EntryPrice, // Entry Price
GetDateString (i), // Exit date
(double)User3[i]) ; // Exit price
}
}
}
fclose (fileptr); // close the file
}
else
{ // else report an error

ReportError ("Trade file could not be opened");

}

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 84
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

The MS indicator code is as follows:

EntryTrigger:=(DayOfWeek ()=1) ;
EntryPrice:=OPEN; { entry or reference price }

ExitPrice:=CLOSE; { exit or threshold price }

EncodedTrigger:=ExtFml ("VitaminC.CallScript3",
"ProfitStopCSVv.c",

"ProfitStop(2)",

EntryTrigger,

EntryPrice,

ExitPrice) ;

EncodedTrigger;

When we apply the indicator to the chart there is only a small amount of trading activity.

* MetaStock - [AMP LIMITED ORDINARY] 4.98000 {+0.07000) =10l
Fie Edit View Insert Format Tools Window Help —|21 x|
D2 H SR & R 0| G |[Fennt Poiseetsy || @ 8 i £ & &b |82
I (W Vitamin-C - Profit Stop CSV
[&

+ 204 E 20

~

—| 157 F 15

|

¥ 1.0 F 10
o+
|l 05+ L
=3
f 0.0 00
[(= ArP LIHTTED ORDINARY EE
| 104 : i E o110

iy, 01
1053 ‘u'nﬁh‘ ot G + o™ E 105

& EN uml] i TM‘H“." Py ol ‘*ﬂ b E
| 100 Findey il b »«'. 00
| 954 ']‘ﬁa E o5

A
20 b m E oo
85 b *hm by E o oes
8.0 r 1#”;['!] il hﬂfw'ﬁim'ml U‘*" E 80
754 i 4'1 i I L 'a. E 75
703 s 10 t i E 70
65 'ﬂd‘]‘ip“‘%lﬂﬁmﬁ i es
6.0 we o
20000 3 F-20000
15000 E- 15000
10000 3 10000
|2<1000| 03 :("I)I)I) 0o
2007 September |October Movember December |2008 February March April May [June July AL
[| sep(troalqra
I =] el ==] =] [iretbank X |
For Help, press F1 [[[[ez [$ Y

Using the Microsoft File Explorer we see that “trades.csv” has been created in the “c:\VitaminCScript”
directory as we expected it to be !

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 85
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
RI=TEY
File Edit Wiew Favorites Tools Help | -:,"
O Back - .‘\) - l.@ /t_) Search i Folders -
Address | C:WitaminCSaript =l Bee
| size | Type | Date Modified ~ | -
File and Folder Tasks # 1KB Microsoft Excel Com.., 20/07/200% 12:29 AM
) 3KB CFile 20/07/2009 12:23 AM
IE]D Rename this file 2] Timesto - _ .
- E p & Type: Microsoft Excel Comma Separated Yalues File 19/07/2009 1:44 PM
[Move this file | Ginewave.d Date Modified: 20/07/2009 12:29 AM 13/07/2008 12:46 PM
) Copy this file] DebugTest] 5125 398 bytes 19/07/2008 1:43 AM
€N Publish this file to the [£) GuppyCBL.c 3KB CFile 13/07/2009 3:41PM
Web 2] simple.c 1KE CFile 12/07/2009 2:01 PM
() E-mail this file [Z] Timestap.c 1KE CFile 05/07/2009 11:25PM
q;a Print thiz filz [Z] profitstop.c 2KB CFile 02/07/2009 11:11 PM b
3 Delete this file [£] TimesStop1.c 2KB CFile 02(07/2009 11:02 PM
[£] Maving Average with switch.c 2KE CFile 02/07/2009 1:40 AM
| E] GuppyCBLBetter.c 3KEB CFile 29/06/2009 1:51 AM
Other Places S [Z] Guppy CBL.C 2KE CFile 28/06/2009 10:13 FM
[£] ema.c 1KE CFile 28/06/2009 2:13 AM
S DRIVE_C(C3) [Z] sma.c 2KB CFile 28/06/2009 1:59 AM
[2) My Documents [Z] TrailingStop.c 2KB CFile 265/06/2009 2:07 AM
[Documents =l) profitstop3.c KB CFile 22/06/2009 12:11 AM hd|

Because files with the csv extension have been registered to open using Excel we can just double click on
this file and it will be loaded into Excel.

F3 Microsoft Excel - trades.csv -0l |

DEEE8RY|s BRI -~ &= s @eD2 -2
J File Edit Wiew Insert Format Tools Data Window Help Acrobat -|I5’|£|

BB

E18 d| =|
Al B | ¢ | Db | E | F | &6 | H [T
1 | Sym Entry Date | Entry Price | Exit Date | Exit Price —
2 | AMP | 2007-08-08 9.97 2007-08-08 10.2
3 | AMP | 2007-08-27 9.99 2007-08-27 10.3
4 | AMP | 2007-09-07 10565 2007-09-07 10,77
5 | AMP | 2007-08-27 10.31 2007-09-27 10.6
6 | AMP | 2007-10-10 10.61) 2007-10-10 10.94
7
B
9
10
(4[4 [» [»i] trades / [«

[raw e Iy ¢ | Auoshapes- N N[O E I [B|>-£-A- ==
Ready || | | | | |

Alternatively since the file is text based we could view it in NotePad or any other text based viewer or
editor as shown below:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 86
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
[P trades.csv - Notepad - 10| x|
File Edit Format WView Help
Sym, Entry Date,., Entry Price, Exit Date, Exit Price ;I

AMP,. 2807-08-0A8, 2.978088,. 2907-08-088. 18. 280000
AMP. Z28@7-A8-27, 7.799888, 2007-88-27. 18. 38988808
AMP,. 28@7-09-@7, 18.55088d, 26087-89-87, 18.7788008
AMP. Z2887-87-27, 18.318884,. 2087-0%-27, 18. 6880800
AMP,. 2887-18-18, 18.61088d, 26887-10-14, 18. 94888008

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 87
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Using Vitamin-C with TradeSim

You can use Vitamin-C with TradeSim in one of two ways. You can use the Vitamin-C scripts to generate
Entry/Exit triggers and prices just as you would do for other MetaStock formulas or plug-in’s. The second
way to use Vitamin-C with TradeSim is to actually create the trade database from within your Vitamin-C
code. Because Vitamin-C comes with the standard ‘C’ library, the entire file IO functions are available
from within the Vitamin-C environment so it is quite easy to create a text based trade database that can be
loaded directly into TradeSim. In the next sections we cover examples of both methods of using Vitamin-C
with TradeSim.

Method 1: Generating Entry and Exit Triggers using Vitamin-C

In this case we use the TradeSim.RecordTrades() function from the TradeSim.dll plugin to create a binary
trade database file, but we use some Vitamin-C code to create our entry and exit triggers for a profit stop
based system. We shall take the profit stop from an earlier chapter and use this as the basis of a simple
trading system, albeit a theoretical one, as nobody would realistically trade a system without a protective
stop.

void ProfitStop(float PercentThreshold)
{
bool InTrade=false;
float EntryPrice=0;
float ProfitThreshold;

for (int i=0;i<BarCount;i++) // loop for all bars
{
Result[i]=0; // initialize r bar
if (!InTrade && Userl[i]>0) // check if not in a trade and valid entry trigger
{
InTrade=true;
EntryPrice=Open([i];
t threshold price
ProfitThreshold=User2[i]* (1 + PercentThreshold/100);
Result[i]=1; // mark a valid entry condition
}
if (InTrade) // 1f in the trade do the check
{
if (User3[i] >= ProfitThreshold) // check for a profit stop condition
{
Result[i]+=2; ed so mark a valid exit conditio

InTrade=false;
}
}
}
}

To create a trade database exploration the following code is used in an exploration. We use the MACD
Entry Trigger to time the entries into the trade. Note that, not all entry triggers will be taken, as this will
depend on the exit conditions because of the way the RecordTrades function works to filter out subsequent
entry triggers until a subsequent exit condition is found.

EntryTrigger:= Ref (Cross (MACD() ,Mov (MACD(),9,E)),-1); { entry trigger }
EntryPrice:=Open; { entry or reference price }

ExitPrice:=Close; { exit or threshold price }

EncodedTrigger:=ExtFml ("VitaminC.CallScript3",

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 88
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
"ProfitStop.c", { name of script file }
"ProfitStop(5)", { function name and profit threshold (5%) argument }
EntryTrigger, { User defined entry trigger }
EntryPrice, { User defined entry or reference price }
ExitPrice { User defined exit or threshold price }

);

ActualEntryTrigger:=EncodedTrigger=1 OR EncodedTrigger=3;
ActualExitTrigger:=EncodedTrigger=2 OR EncodedTrigger=3;
InitialStop:=0;

ExtFml ("TradeSim.Initialize");

ExtFml ("TradeSim.RecordTrades",

"Vitamin-C Profit Stop",{ Trade Database Filename }
LONG, { Trade Position Type }
ActualEntryTrigger, { Entry Trigger }
EntryPrice, { Entry Price }
InitialStop, { Optional Initial Stop }
ActualExitTrigger, { Exit Trigger }

ExitPrice, { Exit Price }
START) ; { Recorder Control }

Insert the code into the MS Explorer according to the TradeSim procedure.

x|

— General

M ame: Witarmin-C Trar

MNates: ;l

Column & | Salumn B | Column © | Solumn D | Column E | Column F | Fiker |

EntryTrigger .= il

Fef (Cross({MACD() HMow(MACD{Y 9 . EXy.—13: 4§ entrv

trigger

EntrvFPrice: =0FPEN: { entrv or reference price }
Col. Mame: ExitPrice:=CLOSE:; { exit or threshold price }

e

N EE

Ok I Cancel Functions... Securities. .. I Options... Help I

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 89
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

You may have to select a reasonable number of bars to take advantage of the periods of a rising market.

The Explorer

.

FS Yalatility Breakout [Chaikin][Signal] ;I Cloze
Tradesim - Traata Monlicata Tradass =} =

IIEEEE Explorer Options El

Tradet Mew...
Trade® [DataLoading

Tradet Ok I .

Tradet | @ Load |2|:|nn = Recards Edi... |
Tradet £ Load Hiri n{:\? 4 Cancel |

Tradet oad Minimun] = ecords Copy... |
Tradet _

Tradet [~ Reporting Help | [elete. .. |
Tradet &

Tradet | Iv Motify when Explaration iz Done ;

Tradet Prirt... |
TradeE-. - i . TSI i .
TradeSim - Test With Survivorship Biaz 3] Organizer... |
WitaminC - Test R

Yitamin-C TradeSim - Prafit Help |

Explare | FReports... | Options... |

Run the exploration and load the corresponding Trade Database into TradeSim.

il
Trade I Sus D I Fos I Sypmbol I Periadicity I CE I SBFTE I Entry D ate-Time I Exit Date-Time I P-Group I P-Level I Re-entry Type I ﬂ
24 0 Long BHP [raily ez Yes AA2/200 0701 /2002 2 0 Baze
25 0 Long RIO Draily Wes e AA2200 01,/02/2002 2 0 Baze
26 0 Long TLS [raily ez es AA2/200 23/07/2003 2 0 Baze J
27 0 Long BHP Draily Wes e 25/01/2002 14/02/2002 3 0 Baze
28 a Long OBE Draily ez Yes 05/02/2002 14/02/2002 2 0 Baze
23 0 Long MCM Draily Wes Ve 06/02/2002 20/03/2002 3 0 Baze
30 a Long BXE Draily ez es 05,/03/2002 20/03/2006 3 0 Baze
il 0 Long wiOw Draily Wes Ve 05,/03/2002 13/04/2002 2 0 Baze
32 a Long BHP Draily ez es 11,/03/2002 16/10/2003 4 0 Baze
33 0 Long CBA& Draily We: Ve 21,/03/2002 03/06/2002 2 0 Baze
34 a Long SUM Draily ez es 22/03/2002 27/02/2004 2 0 Baze
il 0 Long WES Draily We: Ve 02/04/2002 07/09/2004 2 0 Baze
36 0 Long GQBE Draily Wes e 03/04/2002 014112002 3 0 Base
r 0 Long RIO Draily ez Yes 11./04/2002 17/01/2005 3 0 Baze
38 0 Long WEC [raily Wes o Yes 16/04/2002 26/04/2002 2 0 Base
39 0 Long MaB [raily ez Yes 18/04/2002 20/05/2002 3 0 Baze
40 0 Long AMP Draily Wes e 22/04/2002 23/07/2003 3 0 Baze
4 a Long MCHM Draily ez Yes 30/04/2002 07/05/2002 4 0 Baze
42 0 Long wiOw Draily Wes Ve 06/05/2002 11411/2004 3 0 Baze
43 a Long WPL Draily ez Yes 03/05/2002 17/12/2003 2 0 Baze
44 1] Long ORG [Draily e: Yer 24/05/2002 27/08/2002 2 0 Baze _ILI
4 3
Start Entry Date I'I?.-"'I 0/200m j Stop Entry Date |2D.-"03.-"2DDS 'l 272 rades selected from a tatal of 272 trades

As you can see, all trades except for the open trades meet their profit targets which means that the Vitamin-
C code is doing its job in generating the trade data.

The problem with a profit stop based system is that it always looks good on a closed trade equity chart
because the trades always exit with a minimum profit gain. However their maybe sustained periods of
severe draw down, which is not shown up on the closed trade chart. As an example we ran a standard
simulation using the following parameters:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 90
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

=il
Illade Parameters | Preferences |

—Position Size Model——— [Trade Parameters [Stocks)

" Equal Dallar Units Initial Trading Capital Transachion Cost [each way)

" Equal Percent Dollar Linits |$5|]|][|[|_|]|] |$|]_|]|]|] [~ Use Transaction Cost from Trade Database

! Fived Dollar Risk

€ Fived Percert Risk Portfolio Limit Margin Requirement
€ Fived Dollar Yolatilty |1 00.00% |1 00.00% [~ Use Margin Req from Trade Databaze
7! Fized Percent 4olatiity T otal M azimumn O pen Positions

100 [~ Magrify Position Sizefand Risk)
I according to Margin Requirement

™ Pyramid Prafits . .
M arimum allowable daily orders

[Pyramid Trades Margin Requirement Interest B ate
IZI] Long Trades [Debit]
—Par. t - Y 000004
—Simulation Type P Equal Dollar Units [0.0000¢

& Portfolio Simulation Capital per Trads Shart Trades [Credit)

' Partfalio Simulation (lgnare Dates] [$5000.00 0.0000%

" Bazket test

" Monte Carlo &nalysis [~ Specify Daily Interest Rate

—Simulation Dptions
@ Uze Original Ordering ™ Select Position Size Model from Trade
[atabaze

" Enable Provisional Trades

i~ Random walk

[” Enable Survivorship Bias Filter

We then plotted the open equity chart along with the closed trade equity chart:

=10l x|
Relative Drawdownl Undenuater Equityl wigekly F'rofitl wigekly Heturnl kdonthly Profit | I onthiy Heturnl early F'rofitl “rearly Return
Open Trade Equity Chart for all trades (Vitamin-C Profit Stop)
40,000] [30,000
_ o0 Laooo0 g
= L
E‘ 20,000 {70,000 %1
= oo 50,000 E
0 s000 2
-10,000 40,000

0.00

Underwater Equity (%)
B &8 & & &
5 8 B HE

s Pl |eFanplxPow e

s N NN NN NDD 0D O DETTETTILSLDLD 0D CDECDEERELEL DR EEEDED DD
R i e - R -]
EESESSESSCSSCSSSSSESESSSS:SZS:CSScCSSSZ:SSS2SS2S2E:2:S:S:S:=:=:=Z:Sc::=
Eeledngrdrdrgrar g engedngrgrog o g elng g rln o e el r e e e e g e e
SEH TS nnTCfRS-CEEES-CEEESZZIEEEZEEEEEEZEEEEESsEaEe
:!T.EEEE——EEEEE:EEEEE:EEEEE:EEEEE:EEEEEEEEEEE:"EEE
e i e i R = R i =) R = R
CErEEEEEEZEE8E8rREREaaddegEggeaEad EEEEzEZzccaERaREd8aE
||7 Closed Trade Equity I

As you can see the under water equity displays severe retracements in equity for long periods of time.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 91
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Method 2: Creating a Text Trade Database.

Document TB-2 that comes with TradeSim describes the Universal Text Trade Database File Format,
which is the ASCII, or text based trade database format that can be loaded directly into TradeSim. If you
have installed TradeSim you should already have this document in your library otherwise it can be
downloaded directly from the articles section of our website at:

http://www.compuvision.com.au/Articles.htm

The Professional and Enterprise Editions have the ability to read and import ASCII text file versions of the
trade database. The Universal text trade database file format must meet certain requirements otherwise the
file will be rejected when it is loaded into TradeSim. The data within the text file is organized into columns
and is separated by at least one white space character. Some columns are required to have valid data fields
whereas the optional columns should be left blank if the correct data cannot be generated. The data should
be separated by at least one space character and the file name must be appended with a “.trt” file extension
for TradeSim to accept it. The format of each line of data is described in the following table:

Column | Definition Required | Format X:ﬁis Example fll:lc deer
1 Symbol Yes Chgracter ABC)
String
2 Trade Position L=long or
Yes S=short LorS L -

3 Entry Date Yes YYYYMMDD 19970502 -
4 Exit Date Yes YYYYMMDD 19970725 -
5 Initial Stop** Yes Floating point > () 17.5900 0
6 Entry Price Yes Floating point >0 18.0400 -
7 Exit Price Yes Floating point >0 19.0000 -
8 Low Entry . . .

Price Optional Floating point >0 17.7500 0
g Er‘igc}; Bl Optional Floating point | >0 18.2500 0
10 Low Exit Price | Optional Floating point >0 18.5300
11 High Exit . . .

Price Optional Floating point >0 19.1600
12 Traded]

Volume Optional Integer >0 1200000 0
13 Trade Rank Optional Floating point >0 20 0
14 Point Value Optional Floating point >0 30 0
15 Initial Margin | Optional Floating point >0 30000 0

For this example we shall only be interested in the required data (columns 1-7) and ignore the optional data
(columns 8-15). The following Vitamin-C code to this is as follows:

void ProfitStop(float _PercentThreshold)
{

! file name with full path s

top.trt";

// trad

e aa
const char* TradeFileName="C:\\TradeSimData\\P
bool InTrade=false;

tapas

aba
rofi

ts

// boo

float EntryPrice=0; o on trade
entry
float ProfitThreshold; // variable used to hold the profit threshold price

long EntryDatelndex;

FILE *fp;

if (IsSymbol ("AMP")) // check if first security in the list and create a

new

rilte

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved
http://www.compuvision.com.au

Page 92

http://www.compuvision.com.au/Articles.htm

Vitamin-C for Metastock

Version 1.0.1
fp=fopen (TradeFileName, "wt") ; // open and create new file
else
fp=fopen (TradeFileName, "at"); // otherwise open and append data to the existing
file
if (fp!=NULL) // check if successful open
{
for (int i=0;i<BarCount;i++) // loop for all bars
{
Result[i]=0; // initialize result for each bar
if (!InTrade && Userl[i]>0) // check if not in a trade and valid entry trigger
{
InTrade=true; // set the flag
EntryPrice=Open[i]; // set the entry price
// calculate the profit threshold price
ProfitThreshold=User2[i]* (1 + PercentThreshold/100);
Result[i]=1; mark a valid entry condition
EntryDateIndex=1i; // save date index
}
if (InTrade) // 1f in the trade do the check
{ // check for a profit stop condition or
// check for open trade
if (User3[i]>=ProfitThreshold || i==BarCount-1)
{
Result[i]+=2; // thres ched so mark a valid exit condition
InTrade=false; // flag
// the ites out the data to the file
// with proper column formatting
fprintf (fp, "%$-4s %c %1d %1d %10f %10f %10f\n",
GetSymbol (), // symbol
'L', // trade position
GetDate (EntryDatelIndex), // Entry date
GetDate (1), // Exit date
0, // T used
(double) EntryPrice, // E
(double)User3[i]); // E
}
}
}
fclose (fp); // close the file
}
else
{ // else report an error
ReportError ("Trade file could not be opened");
}
}

The trade database exploration code used in MetaStock is as follows:

EntryTrigger:= Ref (Cross (MACD () ,Mov(MACD() ,9,E)) ,-1);

EntryPrice:=0OPEN;

ExitPrice:=CLOSE;

{ entry trigger }
{ entry or reference price }

{ exit or threshold price }

ExtFml ("VitaminC.CallScript3",

"ProfitStopTS.c",
"ProfitStop(5)",
EntryTrigger,
EntryPrice,
ExitPrice

);

{ name of script file }

{ function name and profit threshold argument }
{ User defined entry trigger }

{ User defined entry or reference price }

{ User defined exit or threshold price }

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved

Page 93

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

After you run the trade database exploration code above, the file “ProfitStop.trt” trade database file should
have been created in the TradeSim data directory “c:\TradeSimData”

File Edit View Favorites

Tools

Help

& C:\TradeSimData

=0l x|

| 2x

OBack e "\-)

)Seardn i Folders |v

Address IE} C:\TradeSimData

8=

File and Folder Tasks

2) Make a new folder

@ Publish this folder to the
Web

lad Share this folder

Other Places

e DRIVE_C (C2)

B My Documents
[Documents

:} My Computer

\g My Metwork Places

Details

»

<«

Mame | Size | Type | Date Modified ~ |

M 16 KB TradeSim TextTrad... 24/07/2009 12:34PM

ﬁ i o trh 42KB TradeSim Binary Tra... 23/07/2009 10:45FPM b
4niProfit Stop Tes| Type: TradeSim Text Trade Database File 18KE TradeSim Binary Tra... 04/07/200% 11:23PM
m5nlperLong.se E;:EE Tsocg%d 24/07/2009 12:34PM 3KB TradeSim Session File 22/06/2009 3:20 PM
ﬁSniperLong.h’b 292KB TradeSim Binary Tra... 22/06/2009 2:57 PM

ﬁsimple MACD Test.trb 18KB TradeSim Binary Tra... 19/06/2009 12:31FPM
%Single Security Test.trb 18KE TradeSim Binary Tra... 15/06/2009 2:27 PM
ﬁlndude.ﬂ.llsignals.h’b 82KE TradeSim Binary Tra... 15/06/2009 2:20 PM

%T&st Alt Pyramid Re-entry.trb 11KE TradeSim Binary Tra... 28/05/2009 12:03 AM
%MACD Crossover with SBF.trb 413KB TradeSim Binary Tra... 09/05/2009 1:57PM

%Test Time Stop.trb 92KE TradeSim Binary Tra... 26/04/2009 12:51 AM

%FPO Kingl.trb 432KE TradeSim Binary Tra... 25/04/2009 12:20 AM
%MACD Crossover without SBF. trb 265KB TradeSim Binary Tra... 28/03/2005% 10:23PM
ﬁDuplicate Trades.trb 246 KB TradeSim Binary Tra... 25/03/2009 10:54PM
MHTMRCourseNRL.h'b 1,095KB TradeSim Binary Tra... 23/03/2009 1:36 PM
MTCLEBB 090304RANK. trb 42KE TradeSim Binary Tra... 23/03/2009 11:52 AM
%Tradesim Sample Scan.trb 129KB TradeSim Binary Tra... 03/03/2009 11:51PM

MTest Provisional Trades. trb 17KB TradeSim Binary Tra... 21/02/2009 2:39 PM

A Tect Sinnal Banking trh 360N KR__TradeSim Binary Tra R/N7/70N3 1154 BM LI

You can double click on this file to load it up into TradeSim or load it from within TradeSim itself. As you
can see, both trade database files from both methods have identical trades (including open trades). Both
yield the same simulation results for a given set of trade parameters.

o
Trade I Suz D I I Symbal I Periodicity I CE I SBFTE I Entry D ate-Time I Exit Date-Time I P-Group | P-Level | Re-entry Type | _I
24 0 Long EHF 7 es Yes 3A22001 07/ /2002 0 a Baze
. 25 0 Long RIO ¥ Yes Yes FAzsz20m 0140242002 0 1] Base
26 0 Long TLS ? Yes Yes FA22001 234072009 0 a Base J
27 0 Long BHP ? Yes Yes 25401/2002 1440242002 0] Base
28 0 Long OBE ? ez Yes 0540242002 14/02/2002 0 a Base
29 0 Long MCM ? es Yes 0B/02/2002 20/03/2002 0 a Base
30 0 Long BXE ? YWes Yes 0540342002 20/03/2008 0 a Base
il 0 Long twiliw ? es Yes 0540342002 15/04/2002 0 a Base
32 0 Long BHF ? Yes Yes 114032002 16841042003 0 a Base
33 0 Long CB& ? es Yes 2140342002 03/05/2002 0 a Base
34 0 Long SUM ? Yes Yes 22403/2002 27/02/2004 0 a Base
i) 0 Long WES ? es Yes 02/04/2002 07/09/2004 0 a Base
36 0 Long GBE ? ez ex 084042002 01411/2002 0 1] Base
ar 0 Long RIO 7 es Yes 11404/2002 17/01/2008 0 a Baze
38 0 Long WEC ¥ Yes Yes 164042002 264042002 0 1] Base
39 0 Long MAB ? Yes Yes 18404/2002 20/05/2002 0 a Baze
40 0 Long & ? es Yes 22/04/2002 234072009 0] Base
4 0 Long MCM ? YWes Yes 30404/2002 07/05/2002 0 a Base
42 0 Long twilhw ? Yes Yes 0E/05/2002 1141142004 0] Base
43 0 Long WPL ? YWes Yes 09/05/2002 171242003 0 a Base
44 0 Long ORG ? es Yes 24405/2002 27/08/2002 0 a Base _ILI
4| | »

Start Entry Date

17410/2000 |

Stop Entry Date |2D.-"03.-"2DDS 'l

272 trades selected from a total of 272 trades

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved

http://www.compuvision.com.au

Page 94

Vitamin-C for Metastock

Version 1.0.1

Using Vitamin-C with BullCharts

You can use BullCharts with Vitamin-C in the same way that you use BullCharts with TradeSim. Because
BullCharts is compatible with MetaStock DLL plugins it is quite easy to use BullCharts with Vitamin-C. In
the following example we will construct an indicator that calls the Guppy Count Back line Trailing Stop
indicator that we translated from the AFL code in an earlier section on porting code from other charting
platforms.

The following example assumes that the Vitamin-C installer has installed the Vitamin-C
. DLL plugin into the Bullcharts External Formula directory. This can be checked by

Il,f] " displaying the external formula directory using the Windows File Explorer and checking
i = Y for the existence of VitaminC.dll in the following directory:

C:\Program Files\BullSystems\BullCharts\External Function DLLs

Run BullCharts and open up the indicator builder from the ‘Insert’ menu.

Windicator ~lalx|

Ingert Builder | Indicator Tnnlbarl

Category:

| All Indicators | New...D@J Edit. | Delete | Copy... |
Select Indicator:

I‘-.-"rtamin-C Test

Trading Channel Index ;I
Trend Continuation Factor

Trend Intensity Index

Trend Intensity Index - Trade Pos
Trend Trigger Factor

Trend Trigger Factor Ribbon
Trendline - Zig £ag

TRIX

TREX Momentum

TRsV

True Strength Indicator

Turn Over

Typical Price I
Llltimate Oscillator

alue Traded

I"u'nl:uﬁlih:- Hiztariral Ll

Click on ‘New’ and insert the following code into the editor and call it Vitamin-C CBL Trailing Stop:-

ExtFml ("VitaminC.CallScript",

"GuppyCBL.c", { name of script file }
"CBLTrailingStop(3)") ; { function name and parameter }
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 95

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
ol
Formula Name: I‘-.-"rtamin-C ZBL Traiing Stop Help
ExtFml("VitaminC.CallScript”™,
"GuppyCBL.c", { name of =cript file }
"CBELTrailingStop(3)™); { function name and parameter }
[T Show script helper oK Cancel | Check |

Now insert the indicator onto a chart and merge with the existing chart.

MK Vitamin-C CBL Trailing Stop Properties x|

Location ISt}des I Horizortal IJnesl Advanced I Formula I

Chart Pane:
MNew Pane

—Indicator Scale

" Display new scale on right
" Display new scale on left
{*' Merge with scale on right

2 Volume - AMP - Daiby

£ ilenge with scale on [eft

" Overlay without scale

Defaults... | oK Cancel

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 96
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Shown below is the Vitamin-C Guppy CBL Trailing Stop function overlaid on a chart in BullCharts !

) BullCharts - [AMP - Daily - AMP LIMITED] 1Ol =l
&x‘] File Edit View Insert Format Tools Alers Actions Window Help I j -8 X
ZSymbol: I vl | & EIDain j ICandIesticks j I-j ELO NG S P <t
———=(AMP Daily CI=5.050 0=5.200 H=5.210 L=5.020 -0.110 -2.13% AMP Daily V-CCBLTS 5.030 24/072008 O |
58
£ o L
O - - 55
= - 54
J A - 53
q - 5.2
LH -
| - — 5.1
il - k3650
[/ -
- I
- 48
Fa I
A - 47
) - 48
f - 45
= - 44
== L 43
-_ 47
- 15Mm
- 1M
B :
=
2 || L L
20 [27 [4 [11 [13 [25 [1 [9 [15 [22 [29 [6 [13 [20 [27
April 09 [May'09 [June 09 [duly ‘09
Kl v
) AMP - Day | 4p x|
E69 0 g0 0 [7p7zee ~|[ibsr =] @ 8B cp DB MAC MOM MA OBV SAR RSI S0 | DEF PLA BL VET HAV TC
|Connectedto server || ||5.664 ||ﬁ' | &

You will observe that the results are identical to MetaStock(shown below for comparison) with the same
Vitamin-C indicator overlaid on the same chart !

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 97
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

:-MetaStock - [AMP LIMITED ORDINARY] 5.16000 (+0.11000) =10l x|

=2 File Edit View Insert Format Tools Window Help =
J 0 = E|§&| 3 ‘E| ﬂ|{:} @\”.Vltamlnc Gupp}lCBLTestJl B % fa & 5 04 CD|*‘?

mAMP Vitamin-

565
5.60
555
5.50
545
540
535
530
525
520
515
5.10
505
5.00
495
490
485
480
475
470
465
460
455
450
445
4.40
435
430
425
420

- 15000

- 10000

10000

w0l |1 \‘ \‘ N ‘ | \‘\ “ ‘ | \“ \H

o 10 N | || | ||| L 5
20

27 [+ 11 [18 25 1 9 29 E
May June [July 2

o de2p|t+0d|4rB
|T——— = ——— =|| sueasasd- | == w @B B8

J IAMF' || j”lnterbankFX j| Trade | |
For Help, press F1 [[[[B3 [8[4

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 98
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Advanced Topics

This chapter presents some of the more advanced C++ features that are available from with the Vitamin-C
environment and as such will be of interest only to experienced C++ programmers.

Using the Standard Template Library

The Standard Template Library (STL) provides general-purpose, templatized classes and functions that
implement many popular and commonly used algorithms and data structures. For example it includes
support for strings, vectors, lists, queues, and stacks. It also defines various routines that access them.
Because the STL is constructed from template classes, the algorithms and data structures can be applied to
nearly any type of data.

Q Example 1
This example uses the STL basic_string type demonstrate how to concatenate literal strings and string
variables.

#include <string>
using namespace std;
void Test (void)

{

string sl,s2,s3;

sl="This is string #1";
s2="this is string #2";

s3=sl+" plus "+s2+'\n';
dprintf ("%s",s3.c_str());
float value=1.235;

s3="The floating point value is "+ftostring(value)+" and the integer value is
"+itostring (value) ;

dprintf ("$s\n",s3.c_str());
}
MSFL code used to call the code above:

ExtFml ("VitaminC.CallScript",
"STL string.c", { name of script file }

"Test()"); { function name and parameter }

The results of placing the indicator on a chart produce some text strings in the debug log as follows:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 99
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
E"ﬁDebug Log o]
i op H
Clear Log| Append | Save Log
1 This is string #1 plus this is string #2 ;I

2 The floating point wvalue is 1.235 and the integer wvalue is 1

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 100
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Appendix A

A Brief Introduction to C/C++

This chapter discusses some of the fundamental aspects of the C language. If you are a seasoned C
programmer then you can skip this section. For newcomers we suggest that you read it because it will form
the basis of understanding the material presented in the other chapters. This discussion of the C/C++
language is by no means exhaustive and only really scrapes the surface of its true capabilities. Whilst the
C/C++ language gives you plenty of rope to swing on, the same bit of rope can also be used to hang
yourself with, so bear this in mind before trying use every bit of the language to do something that could be
done simply. At the end of this section if you would like to know more then please refer to the end of this
User Guide for more references on this subject.

Adding Comments to your C-script

Just a few little house rules first. You will note that I have added some comments to the C/C++ code to
make things a little bit easier to follow as well as self-documenting the code. Of course the ‘C++’ standard
expects the Vitamin-C scripting engine to ignore these comments as long as they conform to certain
requirements.

The comments are displayed in light grey type in this document, which is exactly how they are displayed in
the Vitamin-C editor. All C++ comments must start with a double forward slash ‘//> or be enclosed with
forward slash-asterix(/*) and asterix-forward(*/) slash pair. The double forward slash(//) is used for single
line comments whereas the slash-asterix pairs are used for multi-lined comments.

For example the following constitute valid comments.

Forward Slash-Asterix comment pairs can span multiple lines. Double slash comments can’t.

For example the following double slash comment will produce an error because I tried to continue the
comment over the following lines.

This example is the correct way to produce multi-lined comments

What Is a Variable?

In C/C++, a variable is a place to store information. A variable is a location in your computer’s memory in
which you can store a value and from which you can later retrieve that value.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 101
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Storing Data in Memory

Your computer’s memory can be viewed as a series of postboxes. Each post box is one of many, many such
boxes all lined up. Each post box—or memory location—is numbered sequentially. These numbers are
known as memory addresses. A variable reserves one or more postboxes in which you can store a value.

Your variable’s name (for example, myVariable) is a label on one of these post boxes so that you can find it
easily without knowing its actual memory address. The diagram shown below is a schematic representation
of this idea. As you can see from the diagram below, myVariable starts at memory address 1002. Each
postbox has a fixed size of 1 byte, which is the minimum size of each post box. Depending on the size of
myVariable, it can take up one or more memory addresses or bytes of data.

Variable myVariable

Name — l

RAM — | | | | | | |
Address — 1000 1001 1002 1003 1004 1005

Allocating Storage for Variables

When you define a variable in C++, you must tell the compiler what kind of variable it is (this is usually
referred to as the variable’s “type”): an integer, a floating-point number, a character, and so forth. This
information tells the compiler how much room to set aside and what kind of value you want to store in your
variable. It also allows the compiler to warn you or produce an error message if you accidentally attempt to
store a value of the wrong type in your variable (this characteristic of a programming language is called
“strong typing”).

Each postbox is one byte in size. If the type of variable you create is four bytes in size, it needs four bytes
of memory, or four postboxes. The type of the variable (for example, integer) tells the compiler how much
memory (how many postboxes) to set aside for the variable.

Size of Variables

On any one computer, each variable type takes up a single, unchanging amount of room. That is, an integer
might be two bytes on one machine and four on another, but on either computer it is always the same, day
in and day out. Single characters—including letters, numbers, and symbols—are stored in a variable of
type char. A char variable is most often one byte long.

For smaller integer numbers, a variable can be created using the short type. A short integer is two bytes
on most computers, a 1ong integer is usually four bytes, and an integer (without the keyword short or
long) is usually two or four bytes. You’d think the language would specify the exact size that each of its
types should be; however, C++ doesn’t. All it says is that a short must be less than or equal to the size of
an int, which, in turn, must be less than or equal to the size of a long.

The size of an integer is determined by the processor (16 bit, 32 bit, or 64 bit) and the compiler you use. On
a 32-bit computer with an Intel Pentium processor, using modern compilers, integers are four bytes.

Signed and Unsigned Integers

All integer types come in two varieties: signed and unsigned. Sometimes, you need negative numbers,
and sometimes you don’t. Any integer without the word “unsigned” is assumed to be signed. signed
integers can be negative or positive. unsigned integers are always positive.

Integers, whether signed or unsigned are stored in the same amount of space. Because of this, part of
the storage room for a signed integer must be used to hold information on whether the number is
negative or positive. The result is that the largest number you can store in an unsigned integer is twice as
big as the largest positive number you can store in a signed integer.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 102
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

For example, if a short integer is stored in two bytes, then an unsigned short integer can handle
numbers from 0 to 65,535. Alternatively, for a signed short, half the numbers that can be stored are
negative; thus, a signed short can only represent positive numbers up to 32,767. The signed
short can also, however, represent negative numbers giving it a total range from —32,768 to 32,767.

Volatile and Non-Volatile storage

Notice that variables are used for temporary storage. When you exit a program or turn the computer off, the
information in variables is lost. This is what is meant by volatile, non-permanent or temporary storage.
Permanent or non-volatile storage stores data either to non-volatile memory, or to a file on a disk. For
example the global parameters in the Vitamin-C Integrated Development Environment (IDE) are stored in a
file called ‘VitaminC.ini’. Each time Vitamin-C is run this data is read from the hard drive into memory
and vice-versa when the program is terminated, so even though the variables in the program used to store
the initialization data are temporary the action of saving this information to disks ensures that this
information is never lost even when the program and/or the computer are no longer running.

Keywords

Some words are reserved by C++, and you cannot use them as variable names. These keywords have
special meaning to the C++ compiler. Keywords include if, while, for, and main. A list of keywords defined
by C++ is presented in the following table.

The C++ Keywords

asm auto bool break case catch char class

const const_cast continue default delete do double dynamic_cast
else enum explicit export extern false float for

friend goto if inline int long mutable namespace
new operator private protected public register reinterpret_cast | return
short signed sizeof static static_cast struct switch this

throw true try typedef typeid typename union unsigned
using virtual void volatile wchar_t while template

In addition, the following words are reserved:

And and_eq bitand bitor compl not not_eq or

or_eq xor xor_eq

Fundamental Variable Types

Several variable types are built in to C++. They can be conveniently divided into integer variables (the type
discussed so far), floating-point variables, and character variables. Floating-point variables have values that
can be expressed as fractions—that is, they are real numbers. Character variables hold a single byte and are
generally used for holding the 256 characters and symbols of the ASCII and extended ASCII character sets.

The ASCII character set is the set of characters standardized for use on computers.
| ASCII is an acronym for American Standard Code for Information

j Interchange. Nearly every computer operating system supports ASCII,

although many support other international character sets as well.

b i@

The types of variables used in C++ programs are described in the below. This table shows the variable
type, how much room the type generally takes in memory, and what kinds of values can be stored in these
variables. The values that can be stored are determined by the size of the variable types. Shown in the table
below is a list of the fundamental types available in the C++ language. The ones highlighted with pale
green will be the ones most commonly used in your Vitamin-C programs whereas the ones highlighted with
pale orange will be less likely used and the un-highlighted ones will be rarely used if at all.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 103
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
Type Also known as Size Allowable Values
bool 1 byte true or false
char 1 byte 256 character values
unsigned short int unsigned short 2 bytes 0 to 65,535
short int short 2 bytes -32,768 to 32,767
int 4 bytes —2,147,483,648 to0 2,147,483,647
unsigned int unsigned 4 bytes 0 to 4,294,967,295
unsigned long int unsigned long 4 bytes 0 to 4,294,967,295
long int long 4 bytes —2,147,483,648 t0 2,147,483,647
float 4 bytes 1.2¢—38 to 3.4e38
double 8 bytes 2.2e-308 to 1.8e308

Storage Classes

Variables have one of the following storage classes:

auto,

register,
external,
static,
external static

auto variables are created each time the function containing them is evoked, and they vanish each time the
function finishes. The others last for the duration of the program.

Declaring Variables

A variable can be singled-valued (a scalar variable) or contain several values (an array). A variable has a
type (int, char, etc.) and storage class (auto, static, etc.). See above. A declaration statement
declares these attributes. (By default, a variable is storage class auto if declared inside a function and
extern if declared outside a function.) A general form for declaring a scalar variable is:

storage-class type-specifier variable-name
An array is indicated by following the variable name with square brackets containing the number of

elements. This should not be confused with the Vitamin-C built in Array type, which is a derived Class
type that encapsulates the price arrays, used in MetaStock. You’ll learn a bit more about this later on.

Case Sensitivity

C/C++ is case sensitive. In other words, uppercase and lowercase letters are considered to be different. A
variable called age is different from Age, which is different from AGE.

Examples of variable declarations are:

int X; // declare an integer variable
float Y=2.9; // declare a floating variable and initialize it
bool flag=false; // declare a boolean variable amd initialize it
int x,y,z; // declare three integer variables
char periodicity='W'; // declare a character variable and initialize it
char symbol[]="AMP"; // declare a character array and initialize it
int scores[20]; // declare an array of 20 integers
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 104

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Typical Program Forms

A simple program used in Vitamin-C consists of at least one function. The statements of the function are
enclosed between opening and closing braces and there can be more than one statement as in the following
example:

void FunctionName () // function name and declaration
{ // opening brace
int 1i; // variable declaration statement
for (i=0;i<BarCount;i++) // main body of code
Result[i]=(Open[i]+Close[i])/2; // single statement
} // closing brace

Programs may include preprocessor directives and more than one function.

Statements

Simple statements consist of an instruction followed by a semicolon. Some examples of statements are
shown below:

float x; // declaration statement
x = 3.1415926; // assignment statement
printf ("number = $f",x); // function call statement

Structured statements typically consist of a keyword (if, while, for, do-while, etc) followed by a condition
within parentheses.

A statement block consists of one or more statements enclosed in braces. It counts as one statement and is
used in structured statements to allow more than one action to be included in the statement. The following
example demonstrates a statement block.

for (i=0;i<BarCount;i++)

{ // start of statement block
average= (Open[i]+Close[i]) /2;
Result[i]=average;
dprintf ("Average[%d]=%f\n", i, average) ;

} // end of statement block

It is possible to have more than on statement on each line separated by semicolons although this is not
recommended out of consideration for keeping the code tidy as well as for debugging purposes. For
example the above code statement block can be re-written as:

for (i=0; i<BarCount; i++)
{
average= (Open[i]+Close[i])/2;Result[i]l=average;dprintf ("Average[%d]=%f\n", i, average);

}

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 105
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Anatomy of a function.

A function is a section of code, separate from the main program that, perform a single, well-defined task.
Function definitions follow one another. Do not embed one function definition within another function
definition. Execution starts at the beginning of the function name.

Functions with arguments have the arguments declared after the function name and enclosed within
parenthesis. The general form of function is shown in the figure below:

Return Function Formal Parameter List
Type Name
v v v

Function Header | £float AddTwoNumbers (float Numberl, float Number2)

{

float sum;

Function Body sum=_Numberl + _Number2;

return (sum) ;

}

Functions can be grouped into two categories: functions that don’t have return values and functions that do
have return values. Functions without return values are termed type void functions and have the following
general form:

void FunctionName (parameterlist)

{
statement or statement block
return; // optional

A function with a return value produces a value that it returns to the function that called it. In other words,
if the function returns the square root of 9 (sqrt (9)), then this becomes replaced by the value 3. Such a
function is declared as having the same type as the value it returns. The general form of this function is:

typename FunctionName (parameterlist)
{
statement or statement block
return (value) ; // value is of type typename

}

Functions with return values require that you use a return statement so that the value is returned to the
calling statement. The value returned can be a constant, a variable, or a more general expression.

Program Flow Control

Relational Expressions

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 106
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Relational expressions are used to make decisions and control the way a computer executes its instructions.
C/C++ provides six relational operators for comparing numbers. Because characters are represented by
their ASCII code, you can use these operators with characters, too. But they don’t work with character
strings. Each relational expression reduces to the value / if the comparison is true and to 0 if the
comparison is false, so they are well suited for use in loop test expression. The following table summarizes
these operators.

Operator Meaning

< Is less than

<= Is less than or equal to
== Is equal to

> Is greater than

>= Is greater than or equal to
I= Is not equal to

x < 5 // x 1s less than 5 ?
X >= 2 && x < 5 // 1s x greater than and equal to 2 and less than 5
X == 6 && y != 10 // is x equal to 6 or y 1is not equal to 10

The relational operators have a lower precedence than the arithmetic operators. That means the following
expression

|x + 3>y -2 // expression 1

corresponds to

| (x + 3) > (y - 2) // expression 2

and not the following

|x + (3 >y) -2 // expression 3

Because the expression (3 >y) is either 1 or 0, expressions 2 and 3 both are valid. But most of us would
want expression 1 to mean expression 2, and that is what C++ does.

Q A common pitfall
Usually more times than not the equality operator(==) is substituted with the assignment operator(=). For

example the following expression compares X with 7 and returns 1 if it is true otherwise returns 0 if it is
false.

X == // Is X equal to 7 ?

However inadvertently you might use an equals(=) sign by itself rather than the equality operator.

X =17 // This inadvertent assignment results in true always

What happens is that X is assigned the value of seven and the whole expression has the value of 7 because
that’s the value of the left-hand-side. Because the value of the left hand side of the expression is non zero it

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 107
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

is always true from a logical perspective. If this expression was used, as a test condition in a loop then the
loop would never exit and run forever or until the computer was switched off.

The if Statement

When a C program must choose whether or not to take a particular action, you can use the 1 £ statement.
The if statement comes in two forms: i f and i £..else. The if statement directs a program to execute a

statement or statement block if a test condition is true and to skip that statement or block if the condition is
false. The syntax is as follows:

if (test-condition)

statement or statement block

Diagrammatically the i £ statement can be represented by the following flowchart:

test-condition True—» statement(s)

False

A

A non-zero fest-condition (true) causes the program to execute statement, which can be a single statement
or a block. A zero fest-condition (false) causes the program to skip statement. The entire i £ construction
counts as a single statement. By the way, the statement portion can’t be a single declaration statement;
declarations have to be placed where they can’t be skipped. However a statement block enclosed with
braces can contain declarations used as temporary variables. Most often, test-condition will be a relational
expression like those used to control loops.

An example of an if statement is:

if (GetDate (i) > 20081103)
Result[i]=lastvalue;

The if...else Statement

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 108
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

The if statement lets a program decide whether a particular statement or block is executed. The i f..else
statement lets a program decide which of two statements or blocks is executed. It is an invaluable statement
for creating alternative courses of action. The if else statement has the general form:

if (test-condition)
1°% statement or statement block

else

2"% statement or statement block

Diagrammatically the i f..else statement can be represented by the following flowchart:

test-condition True »| statement1(s)

False

statement2(s)

If test-condition is nonzero(true), the program executes statementl and skips over statement2. Otherwise,
when test-condition is zero (false), the program skips statementl and executes statement?2 instead.

An example of an i f..else statement is:

if (GetDate (i) > 20081103)
Result[1]=6;

else
Result[i]=Close[1];

The if...else...if...else Statement

The if..else..if statement lets a program decide which of many statements or blocks is executed. It is

an invaluable statement for creating many courses of action. The 1f..else..if..else statement has the
general form:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 109
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

if (test-conditionl)

1°" statement or statement block
else if (test-condition?2)

2" statement or statement block

else (optional-test-condition)

last statement or statement block

It is important to note that the last else statement does not have an i £ statement proceeding it.

Diagrammatically the 1 £..else..if..else statement can be represented by the following flowchart:

test-condition1 True » statement1(s)

False

test-condition2 True—»| statement2(s)

Optional last
statement(s)
v
Q Example 1
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 110

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

if (date > 20081103)
Result[i]=6;

Result[i]=Close[i];
O Example 2

if (date > 20081103)
Result[i1]=6;

Result[i]=Close[1i];
else
Result[i]=(High[i]+Low[i]+Open[i]+Close[i])/4;

The ?: Operator

C++ has an operator that can often be used instead of the i f...else statement. This operator is called the
conditional operator, written ?:, and is the only C++ operator that requires three operands. It is what is
called a ternary operator as opposed to binary and unary operators. The general form looks like this:

expressionl ? expression? : expression3

If expression| is true, then the value of the whole conditional expression is the value of expression?.
Otherwise, the value of the whole expression is the value of expression3.

We used the conditional operator in an earlier chapter when we ported some AFL code across to run under
Vitamin-C. In this case we use the conditional operator to replace the AFL Max(x,y) function used to return
the maximum of two values. For example, to calculate the maximum of two values use the following:

Maximum=(x > y) ? X : y;

The switch Statement

You can extend an 1f. .else..if. .else sequence to handle multiple alternatives, but the switch
statement handles selecting a choice from an extended list more easily. Here’s the general from for a
switch statement:

switch (integer-expression)

{
case labell : statement (s)
case label?2 : statement (s)
case label3 : statement (s)

default: statement (s)

A switch statement acts as a routing device, re-directing the computer to execute a particular statement or
block of statements based on the value of the integer-expression. For example, if integer-expression has the
value 4, the program will go to the line where the label matches the integer-expression, which in this case is
the case 4: label. The value integer-expression, as the name suggests, must be an expression that
reduces to an integer value. Also, each label must be an integer constant expression. It cannot be a variable
of any kind. Most often labels are simple int or char constants such as 1 or °q’. If integer-expression
doesn’t match any of the labels, the program jumps to the line labeled default.The default label is
optional. If you omit it and there is no match, the program jumps to the next statement following the
switch.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 111
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

It is important to note that a potential trap can arise because the case label functions only as a line label,
not as a boundary between choices. That is, once a program jumps to a particular line in a switch, it then
sequentially executes a/l the statements following that line in the switch unless you explicitly direct it
otherwise. Execution does NOT automatically stop at the next case. To make execution stop at the end of
a particular group of statements, you must use the break statement. This causes execution to jump to the
statement following the switch.

Q Example 1

for (int 1=0;i<count;i++) // loop for all bar

{

0

Result (1)=0; // initialize result for each bar

switch (method)
{
case SIMPLE: // simple moving average
sum+=Userl (i) -Userl (i- period);
Result (i)=sum/ period;

break;

case EXP: // exponential moving average
Result (i)=Userl (i) *K+Result (i-1) * (1-K) ;
break;

Q Example 2

Their maybe situations where you want the same code to be executed for a range of labels rather than a
particular label. In this case you just list all of the labels in sequence followed by the respective code and
break statement as in the following example:

switch (inchar)

{

case 'A':

case 'B':

case 'C':
alpha=true;
break;

case '0':

case 'l':

case '2':
numeric=true;
break;

Logical Expressions

Quite often you will need to test for more than one condition. For instance you may want an entry price to
be between the low of the day and the opening price in order to get filled in the market. To meet these kind
of needs the C language provides three logical operators to combine or modify existing expressions. The
operators are the logical OR, written as ||, logical AND, written as &&, and logical NOT, written as |. We
will now describe these in more detail.

The Logical OR Operator ||

This operator combines two expressions into one. If either, or both, of the original expressions is nonzero
(true), the resulting expression has the value 1 (true).

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 112
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

The Truth Table for Exprl || Expr2

Exprl == true Exprl = false
Expr2 == true 1 (true) 1 (true)
Expr2 == false 1 (true) 0 (false)
Here are some examples:
6==6 || T== // true because the first expression is true
7>9 || 16<20 // true because the second expression is true
3==3 || 1l1l==11 // true because both expressions are true
5!=5 || 7!=7 // false because both expressions are false

Because the || has a lower precedence than the relational operators, we don’t need to use parentheses in
these expressions.

The Logical AND Operator &&

The logical AND operator, written &&, also combines two expressions into one. The resulting expression
has the value 1(true) only if both of the original expressions are true.

The Truth Table for Exprl && Expr2

Exprl == true Exprl = false
Expr2 == true 1 (true) 1 (false)
Expr2 = false 1 (false) 0 (false)
Here are some examples:
6==6 && 7== // false because the second expression is false
7>9 && 16<20 // false because the first expression is false
3==3 && 11==11 // true because both expressions are true
51=5 g&& 7!=7 // false because both expressions are false

Because the && has a lower precedence than the relational operators, we don’t need to use parentheses in
these expressions.

The Logical NOT Operator !

The ! operator negates, or reverses the truth value of, the expression following it. That is if expression is
true, then /expression is false, and vice versa. More precisely, if expression is nonzero, then /expression is
zero. And if expression is zero, then !expression is 1.

The Truth Table for !Expr
Expr == true Expr == false
'Expr 0 (false) 1 (true)

Loops

Loops allow you to repeat tasks a multiple number of times. These tasks can be simple or complex. There
are essentially three types of loop constructs in C++. These are the for-loop, while, and do-while loop. Each
will be discussed in detail in the next few sections.

The for-loop

The for-loop provides a step-by-step framework for performing repeated actions. It is the most commonly
used form of the looping constructs in C++. The usual parts of a for loop handle these steps:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved
http://www.compuvision.com.au

Page 113

Vitamin-C for Metastock

Version 1.0.1

Setting an initial value

Performing a test to see if the loop should continue
Executing the loop actions

Updating value(s) used for the test

The initialization, test, and update actions constitute a three-part control section enclosed in parentheses.
Each part is an expression, and semicolons are used to separate the expressions from each other. The
statement following the control section is called the body of the loop, and is executed as long as the test-
expression remains true:

for(initialization,; test-expression; update-expression)

body

C++ syntax counts a complete for statement as a single statement, even though it may incorporate one or
more statements in the body portion.

The loop evaluates initialization just once. Typically, programs use this expression to set a variable to a
starting value, then use the variable to count loop cycles.

The test-expression determines whether the loop body gets executed. Typically, this expression is a
relational expression, that is, one that compares two values. If the comparison is true, then the program
executes the loop body. Actually, C++ doesn’t limit test-expression to true or false comparisons. You can
use any expression. If the expression evaluates to zero, the loop terminates. If the expression evaluates to
nonzero, the loop continues. The following flowchart illustrates the way a for-loop operates.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 114
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
Initialization
expression
Update
expression
Y
Test Statement or
. True—»|
expression Statement block
False

Q Example

for (int i=0;i<BarCount;i++)
Result[i]=(Close[i]+Open[i])/2;

The while loop
The while loop is a for-loop with the initialization and update parts removed. It has the following syntax
and flowchart forms:

while (test-expression)

body

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 115
http://www.compuvision.com.au

Vitamin-C for Metastock
Version 1.0.1

Test Statement or
True—»

expression Statement block

False

!

Firstly a program evaluates the fest-condition expression. If the expression evaluates to a nonzero
value(true), the program executes the statement(s) in the body. As with a for loop, the body consists of a
single statement or of a block defined by paired braces. After finishing with the body, the program returns
to the test-condition and reevaluates it, If the condition is nonzero, the program executes the body again.
This cycle of testing and execution continues until the test-condition evaluates to O(false).

If you want the loop to terminate eventually, something with the loop body must do something to affect the
test-condition expression other the loop will repeat forever. For example, the loop could increment a
variable used in the test condition, which will eventually reach a certain value for which the fest-condition
will evaluate as false and the loop will terminate.

Like the for loop, the while loop is an entry-condition loop. Thus if test-condition evaluates as false to
begin with, the program never executes the body of the loop.

Q Example

int i1=0;
while (i<BarCount)

{
Result[i]=(Close[i]+0Open[i])/2;
i++;

The do...while loop

The do while loop is different to the other two loop constructs because it is an exit-condition loop. This
means that the body of the loop is always executed at least once because the test expression is performed at
the end of the loop. If the condition evaluates to false, the loop terminates; otherwise it repeats itself again
before the test expression is evaluated again. It has the following syntax and flow chart forms:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 116
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

do
body

while (test-expression)

Statement or
Statement block

True

Test
expression

False

!

If you want the loop to terminate eventually, something with the loop body must do something to affect the
test-condition expression other the loop will repeat forever. For example, the loop could increment a
variable used in the test condition, which will eventually reach a certain value for which the fest-condition
will evaluate as false and the loop will terminate.

Q Example
Read from keyboard and echo it to the consol until the user presses the carriage return.

char ch;
do

{
ch=getch () ;
printf ("%c",ch);
}while (ch!="\n");

The break statement

You were briefly introduced to the break statement in an earlier section as a means of jumping or breaking
out of a switch statement. Break can also be used to break out of a loop typically when a condition is met.
Typically you may have a while or for loop but you may want to break out of the loop before the test
condition is tested.

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 117
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Q Example
Read from keyboard and echo it to the consol until the user presses the carriage return. If the user
presses the carriage return first then the program aborts and does not print the carriage return.

char ch;
do

{
ch=getch () ;
if (ch=='\n') break; / check for carriage return
printf ("$c",ch);

}while (ch!="\n");)

statement (s) \J/

The continue statement

The continue statement is used in loops and causes a program to skip the body of the loop and continue
back up to the start of the loop. You should make sure there is a means of exiting the loop such as
incrementing a loop iterator otherwise the loop may not terminate and hang your program.

for (int i=0;i<BarCount;i++) ‘
{ \
if (GetDate (i) < 20081103)
the rest of the loop
continue;

\

N4

wait for date to be reached before completing

statement (s) ;

}

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 118
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Appendix B

General Forms of CallScript

The different forms of the CallScript function only vary by the number of data array arguments. Use the
function call, which is appropriate for your Vitamin-C script.

CallScript (0 user array arguments)

ExtFml ("VitaminC.CallScriptl", { Name of external function }
"SCRIPT FILENAME", { 1. Vitamin-C script filename including path}
"FUNC_NAME ARGUMENTS", { 2. Function Name and arguments }

);

CallScript1 (1 user array arguments)

ExtFml ("VitaminC.CallScriptl", { Name of external function }
"SCRIPT FILENAME", { 1. Vitamin-C script filename including path}
"FUNC_NAME ARGUMENTS", { 2. Function Name and arguments }
UserArrayArgl { 3. User Supplied Array }

CallScript2 (2 user array arguments)

ExtFml ("VitaminC.CallScript2", { Name of external function }
"SCRIPT FILENAME", { 1. Vitamin-C script filename including path}
"FUNC_NAME ARGUMENTS", { 2. Function Name and arguments }
UserArrayArgl { 3. User Supplied Array }
UserArrayArg2 { 4. User Supplied Array }

);

CallScript3 (3 user array arguments)

ExtFml ("VitaminC.CallScript3", { Name of external function }
"SCRIPT FILENAME", { 1. Vitamin-C script filename including path}
"FUNC_NAME ARGUMENTS", { 2. Function Name and arguments }
UserArrayArgl { 3. User Supplied Array }
UserArrayArg2 { 4. User Supplied Array }
UserArrayArg3 { 5. User Supplied Array }
)i
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 119

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
CallScript4 (4 user array arguments)
ExtFml ("VitaminC.CallScript4", { Name of external function }
"SCRIPT FILENAME", { 1. Vitamin-C script filename including path}
"FUNC_NAME ARGUMENTS", { 2. Function Name and arguments }
UserArrayArgl { 3. User Supplied Array }
UserArrayArg2 { 4. User Supplied Array }
UserArrayArg3 { 5. User Supplied Array }
UserArrayArg4 { 6. User Supplied Array }
)i
CallScript5 (5 user array arguments)
ExtFml ("VitaminC.CallScript5", { Name of external function }
"SCRIPT FILENAME", { 1. Vitamin-C script filename including path}
"FUNC_NAME ARGUMENTS", { 2. Function Name and arguments }
UserArrayArgl { 3. User Supplied Array }
UserArrayArg2 { 4. User Supplied Array }
UserArrayArg3 { 5. User Supplied Array }
UserArrayArg4 { 6. User Supplied Array }
UserArrayArg5 { 7. User Supplied Array }

);

CallScript6 (6 user array arguments)

ExtFml ("VitaminC.CallScripté", { Name of external function }
"SCRIPT FILENAME", { 1. Vitamin-C script filename including path}
"FUNC_NAME ARGUMENTS", { 2. Function Name and arguments }
UserArrayArgl { 3. User Supplied Array }
UserArrayArg2 { 4. User Supplied Array }
UserArrayArg3 { 5. User Supplied Array }
UserArrayArg4 { 6. User Supplied Array }
UserArrayArg5 { 7. User Supplied Array }
UserArrayArg6 { 8. User Supplied Array }
)i
CallScript7 (7 user array arguments)
ExtFml ("VitaminC.CallScript6", { Name of external function }
"SCRIPT FILENAME", { 1. Vitamin-C script filename including path}

"FUNC_NAME ARGUMENTS", { 2. Function Name and arguments }

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved
http://www.compuvision.com.au

Page 120

Vitamin-C for Metastock

Version 1.0.1
UserArrayArgl { 3. User Supplied Array }
UserArrayArg2 { 4. User Supplied Array }
UserArrayArg3 { 5. User Supplied Array }
UserArrayArg4 { 6. User Supplied Array }
UserArrayArg5 { 7. User Supplied Array }
UserArrayArg6 { 8. User Supplied Array }
UserArrayArg7 { 9. User Supplied Array }
)
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 121

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Appendix C

The Array Class Type

The Array class is a special class type used to define new arrays of floating point numbers or to encapsulate
existing arrays of floating point numbers such as the closing, opening, low, high, volume floating point
price series in MetaStock so that they are easily accessible and can be manipulated within the Vitamin-C
environment, and without having to worry about the idiosyncrasies of accessing this information at the
lower level using the MetaStock Developers Kit.

The Array class allows encapsulation of existing MetaStock price and data arrays for an intuitive and
streamlined program interface. Both array indexing and array manipulation are available to the programmer
and can be used independently or together to get the most flexibility. As well some member and friend
functions have hand optimized machine code (Ultraboost), which takes advantage of the on-chip data
caches as well as the CPU and Numeric Processor instruction set allows super fast array processing and
manipulation !

Available Operators

The following table shows the available operators that are built into the Array class structure. All
overloaded operators have been written in assembly language for maximum speed and performance by
taking advantage of the CPU and Numeric Processor Instruction set. The following definitions are used:

A = Array object,

B = Array object,

C = Array object,

K = Floating point or Integer Constant,

i = integer used for Array element indexing

Array Operators

Unary Operator | Syntax | Ultraboost Examples T
MSFL
Negation - -A Yes -Close -
I(;gi;:Slon ! 'A Yes 'EntryTrigger R
Binary Operator | Syntax | Ultraboost Examples E(ﬁg;fnt
Addition + A+B Yes Open+Close +
+ A+K Yes Open+2 +
+ K+A Yes 2+0pen +
Subtraction - A-B Yes Open-Close -
A-K Yes Open-2 -
- K-A Yes 2-0Open -
Division / A/B Yes Open/Close /
/ A/K Yes Open/?2 /
/ K/A Yes 2/0Open /
Multiplication * A*B Yes Open*Close *
* A*K Yes Open*2 *
* K*A Yes 2*0pen *
Greater Than > A>B Yes Open>Close >
> A>K Yes Open>2 >
> K>A Yes 2>0pen >
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 122

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1
Greater Than >= A>=B Yes Open>=Close >=
or Equal to
>= A>=K Yes Open>=2 >=
>= K>=A Yes 2>=0pen >=
Less Than < A<B Yes Open<Close <
< A<K Yes Open<2 <
< K<A Yes 2<0Open <
Less Than or <= A<=B Yes Open<=Close <=
Equal to
<= A<=K Yes Open<=2 <=
<= K<=A Yes 2<=0pen <=
Equal To == ==B Yes Close==0pen =
== A==K Yes Close== =
== K==A Yes 2==Close =
Not Equal To I= A!=B Yes Close!=0pen <>
I= Al!=K Yes Close!=2 <>
= K!=A Yes 2!=Close <>
Compound Operator | Syntax | Ultraboost Examples E(ﬁlggfm
Addition += A+=K Yes Result+=2 N/A
+= A+=B Yes Result+=Close N/A
Subtraction -= A-=K Yes Result-=2 N/A
-= A-=B Yes Result-=Close N/A
Division /= A/=K Yes Result/=2 N/A
/= A/=B Yes Result/=Close N/A
Multiplication *= A*=K Yes Result*=2 N/A
= A=B Yes Result*=Close N/A
Other Operator | Syntax | Ultraboost Examples E(ﬁg;fm
Subscripting [] Ali] - Result[5] N/A

Array Member Functions

Array Member Functions

Function Description Example

Array: :size() Returns the number of A.size()
elements in the array

int Array::GetFirstIndex (void) Gets the first wvalid bar in A.GetFirstIndex ()
the array.

int Array::GetLastIndex (void) Gets the last valid bar in A.GetLastIndex ()

the array.
void Array::SetFirstIndex(const int Sets the first valid bar N A.SetFirstIndex (4)

N) bars from the start of the
array.
void Array::SetLastIndex(const int Sets the last valid bar N A.SetLastIndex (230)
N) bars from the start of the
array.
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 123

http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Array Friend Functions

Array Friend Functions

in a DATA ARRAY(A). A positive PERIOD
references "N" periods in the future; a
negative PERIOD references "N" periods ago.

Function/Description Ultra | Example Equivalent MSFL
boost

Array ref (const Array A,const int N)

References a previous or subsequent element Yes ref (Close,-1) ref (DATA ARRAY,

PERIODS)

Array IF (const Array C,const Array Al,const Array A2)

ARRAY (A) for the specified number of
lookback PERIODs (N) (including today) .

A conditional function that returns the Yes IF (Close>Open,Cl if (DATA ARRAY
second parameter (THEN) if the conditional ose, Open) > >= < <= <> =
expression defined by the first parameter, DATA ARRAY, THEN
C, is true; otherwise, the third parameter DATA ARRAY, ELSE
is returned (ELSE). DATA ARRAY)
Array sum(const Array A,const int N)

Calculates a cumulative sum of the DATA Yes Sum(close, 5) sum(DATA ARRAY,

PERIODS)

Array valuewhen (int N,const Array C,const Array A)

ARRAY from the first period in the chart.

Returns the value of the DATA ARRAY, A, No valuewhen (2,Clos valuewhen (Nth,
when the EXPRESSION, C, was true on the Nth e==0pen, Close) EXPRESSION, DATA
most recent occurrence. This includes all ARRAY)

data loaded in the chart.

Array lowest(const Array A)

Calculates the lowest value in the DATA No lowest (Close) lowest (DATA
ARRAY since the first day loaded in the ARRAY)

chart.

Array lowestbars (const Array A)

Calculates the number of periods that have No lowestbars (Close lowestbars (DATA
passed since the DATA ARRAY's lowest value.) ARRAY)

This includes all data loaded in the chart.

Array llv(const Array A,const int N)

Calculates the lowest value in the DATA No 1llv(Close, 14) 11v(DATA ARRAY,
ARRAY over the preceding PERIODS (PERIODS PERIODS)
includes the current day).

Array highest(const Array A)

Calculates the highest value in the DATA No highest (Close) highest (DATA
ARRAY since the first day loaded in the ARRAY)

chart.

Array highestbars (const Array A)

Calculates the number of periods that have No highestbars (Clos highestbars (
passed since the DATA ARRAY's highest e) DATA ARRAY)
value. This includes all data loaded in

the chart.

Array hhv(const Array A,const int N)

Calculates the highest value in the DATA No hhv (Close, 14) hhv (DATA ARRAY,
ARRAY over the preceding PERIODS (PERIODS PERIODS)
includes the current day).

Array cum(const Array A);

Calculates a cumulative sum of the DATA Yes cum(Close) cum(DATA ARRAY

)

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved
http://www.compuvision.com.au

Page 124

Vitamin-C for Metastock

Version 1.0.1

Appendix D

Installing the Free Borland C++ Compiler on your
system

To use an external C++ compiler to parse the Vitamin-C script file and report back the errors to the IDE
requires that you have installed the available Borland C++ compiler Version 5.5 compiler, which is freely
available from:

http://www.codegear.com/downloads/free/cppbuilder

@ EMBARCADERO [sescr| (@) Locstion | ngien |LogOn

TECHNOLOGIES

Home Products Solutions Support Developer Network Education Downloads How to Buy About Us

Downloads Y ia

Trial downloads, free product downloads and registered users downloads

Downloads (keys where

. You can purchase the product editions listed on this page, and the other C++Builder editions that @ Download
required) are not listed on our shop site. . Help

Name Platform Version Release Date Size Notes

C++Builder 2010 Architect Trial Windows 2010 08/25/2009 Varies Free trial edition of C++Builder 2010 full
IDE including our latest C++ compiler with early
support for C++0x standards, editor, debugger, visual
development toals, new database modeling and
design capabilities, Unicode support and much
mare.
C++Builder 2010 product information

Embarcadero RAD Studio 2010 Trial Windows 2010 08/25/2009 Varies Free 30 day trial includes C++Builder 2010, Delphi

asEEEEEy 2010 and Delphi Prism 2010 for NET. RAD Studio
““‘ ."., product information.
3 .

- (S
: Borland C++ Compiler H Windows 85 08/24/2000 8.7 Mb Free Borland C++ Compiler download. Please see
e {j "’ the file behStool hip in the Help directory for complete
Caa, us® instructions on using the C++Builder Compiler and
"sgpmuunt®

Command Line Tools. Some items referred to in the
Command-line Tools help (bcbbtools hip) are not
included in the free C++Builder Compiler package.
Mare Information:

What is Included

Supplementary Information

Using C++Builder Compiler

Downloads are no longer available for C++Builder products earlier than version 2007, Turbo C++ or Borland C++.

CONTACT US SITE MAP LEGAL NOTICES PRIVACY POLICY REPORT SOFTWARE PIRACY Copyright® 1994 - 2009 Embarcaderoc Technelogies, Inc. All rights reserved.

If you already have C++ Builder 6 or below installed on your system then you can skip this step. You can
easily check if you have C++ Builder and the compiler is installed on your system by running a command
prompt and typing bee32 at the command prompt. You should see something similar to the following:

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 125
http://www.compuvision.com.au

http://www.codegear.com/downloads/free/cppbuilder

Vitamin-C for Metastock

Version 1.0.1

Borland C++ 5.5.1 for Win32 Copyright <c> 1993, 2080 Borland I
iz: BCGC32 [options 1 filelsl #* = default; —x— = turn switch x off
= 8A386 Instructions —4 88486 Instructions

Pentium Instructions —6 Pentium Pro Instructions
Dizahle extensions -B Compile via assembly
Allow nested comments =D Define macro
Alternate Assembler name —Hxxx Use pre—compiled headers
Include files directorwy -K Default char is unsigned
Libraries directory -M Generate link map
Check stack overflow —0x Optimizations
Force C++ compile -R Produce hrowser info
Generate RTTI -5 Produce assemhly output
Set assemhler option = Undef ine macro
Uirtual table control - Suppress autodep. output
Align on N hytes -h Treat enums as integeps
Compile only —-d Merge duplicate strings
Executable file name —fFxx Floating point options
Stop after N warnings —iN Max. identifier length
Stop after N errors -k Standard stack frame
Set linker option —IXKX Output file directory
—0MHNH Object file name - Pazscal calls
—tllxxx Create Windows app -u Underscores on externs
-u Source level debugging —LICK Warning control
—HHHH Exception handling -y Produce line number info
—EXXX Set segment names

R

Otherwise if it is not installed on your system download the setup file to your computer and then run it and
follow the prompts as shown below:

Borland C++ Compiler 5.5.1 - Welcome x|

Borland C++ Compiler 5.5
With Command Line Tools
Version 5.5.1

Register your product at:
hitp:iwww barland. comibcpphuilderwehreag!

Copyright 2000 Inprise Corp.

[rstallShisld
< Back Mext = Cancel
=N When installing the free Borland compiler make sure it is installed in its default
] b installation directory ie X:\Borland\BCC55 where X is the same logical drive where
i Vitamin-C is installed on.
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 126

http://www.compuvision.com.au

Vitamin-C for Metastock

Borland C++ Compiler 5.5.1 - Installation Folder

Version 1.0.1

Fleaze enter the folder where the filez should be unpacked.
[f the folder does nok exist, you will be prompted to create i,

Inztallation Falder

Browsze. .. |

X

Don’t change the default
installation directory and
make sure that it is
installed on the same

drive as Vitamin-C

|mztallEheld

< Back I Flnish£ I Cancel

If the installation has been successful then you should be able to see the files with file explorer.

&% C:\Borland

=101 x|

File Edit WView Favorites Tools Help

Qe - - T

p Search

v

F-Ei‘_ Folders

Address I[ﬁ C:\Borland

e

Folders

¥ [Mame

ﬂ, 3V Floppy [A:)

[< DRIVE_C (C:)
ICT) 7303082728017fa76664fd21
oA
I5) ABFsoft
I3 BIN
= O e
El [0 BCoss [%
[Bin
|5 Examples
[5) Help
I3 Indude
I3 Lib

x Backup on ‘MyBookWorld {mybookworld)' (B:) _|

N [CBCCSS

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved
http://www.compuvision.com.au

Page 127

Vitamin-C for Metastock

Version 1.0.1

Appendix E

MetaStock Sample Indicator code

The following MSFL code is used for creating Indicators that call the sample Vitamin-C scripts that are
installed as part of the set-up file to the Vitamin-C script directory (c:\VitaminCScript\) upon installation.
To use them you will need to create new indicators in MetaStock and copy and paste the code below into
each indicator.

Adaptive Moving Average

Vitamin-C - AMA

fast := 2/(2+1);

slow := 2/(30+1) ;

dir:=Abs (CLOSE-Ref (CLOSE,-10)) ;
volatility:=Sum(Abs (CLOSE-Ref (CLOSE,-1)),10);
ER:=dir/volatility;

sc:=Power (ER* (fast-slow) +slow, 2) ;

ExtFml ("VitaminC.CallScript2",

"AMA.c", { name of script file }

"AMA ()", { function name and parameter }
CLOSE, { Userl data array }

sc) ; { User2 data array }

Exponential Moving Average

Vitamin-C - EMA Test

ExtFml ("VitaminC.CallScriptl",

"EMA.c", { name of script file }
"EMA (10) ", { function name and parameter }
CLOSE) ; { data array }

Simple Moving Average

Vitamin-C - SMA Test

ExtFml ("VitaminC.CallScriptl",

"SMA.c", { name of script file }
"SMA (10) ", { function name and parameter }
CLOSE) ; { data array }
Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 128

http://www.compuvision.com.au

Vitamin-C for Metastock

Guppy CBL

Version 1.0.1

Vitamin-C - Guppy CBL Test

ExtFml ("VitaminC.CallScript",

"GuppyCBL.c",

"CBLTrailingStop(3)") ;

{ name of script file }

{ function name and parameter }

2D-Array

Vitamin-C - 2D-Array

ExtFml ("VitaminC.CallScript",

"2DArray.c",

"Test2Darray()") ;

{ name of script file }

{ function name and parameter }

3D-Array

Vitamin-C - 3D-Array

ExtFml ("VitaminC.CallScript",

"3DArray.c",

"Test3Darray()") ;

{ name of script file }

{ function name and parameter }

STL string

Vitamin-C - STL string Test

ExtFml ("VitaminC.CallScript",

"STL string.c",
"Test () ") 2

{ name of script file }

{ function name and parameter }

Sinewave

Vitamin-C - Sinewave

ExtFml ("VitaminC.CallScript",

"Sinewave.c",

"Sinewave () ") ;

{ name of script file }

{ function name and parameter }

If()

Vitamin-C - Test If(...)

ExtFml ("VitaminC.CallScript",

"IF.c" ,

{ name of script file }

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved

http://www.compuvision.com.au

Page 129

Vitamin-C for Metastock

Version 1.0.1
|"TestIF()"); { function name and parameter }
Simple Moving Average
Vitamin-C - SMA Test
ExtFml ("VitaminC.CallScriptl",
"SMA.c", { name of script file }
"SMA (10) ", { function name and parameter }
CLOSE) ; { data array }
Trailing Stop

Vitamin-C - Trailing Stop Test

ExtFml ("VitaminC.CallScript3",
"TrailingStop.c",
"TrailingStop (BAND,LONG) ",
3*ATR(10),

CLOSE,

LOW) ;

ExtFml ("VitaminC.CallScript3",
"TrailingStop.c",
"TrailingStop (BAND, SHORT) ",
3*ATR(10),

CLOSE,

HIGH) ;

Time Stop

Vitamin-C - Time Stop

EntryTrigger:=(DayOfWeek ()=1) ;

EncodedTrigger:=ExtFml("VitaminC.CallScriptl",

"TimeStop.c", { name of script file }
"TimeStop (30)", { function name and parameter }
EntryTrigger) ;

ActualEntryTrigger:=(EncodedTrigger=1) OR (EncodedTrigger=3) ;

ActualExitTrigger:=(EncodedTrigger=2) OR (EncodedTrigger=3) ;

ActualEntryTrigger; { display entry trigger on chart }

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 130
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

ActualExitTrigger; { display exit trigger on chart }

Profit Stop

Vitamin-C - Profit Stop

EntryTrigger:=(DayOfWeek ()=1) ;
EntryPrice:=OPEN; { entry or reference price }

ExitPrice:=CLOSE; { exit or threshold price }

EncodedTrigger:=ExtFml("VitaminC.CallScript3",
"ProfitStop.c",

"ProfitStop(2)",

EntryTrigger,

EntryPrice,

ExitPrice) ;

EncodedTrigger;

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 131
http://www.compuvision.com.au

Vitamin-C for Metastock

Version 1.0.1

Reference Literature

The following references are ones that provide relevant background material for using TradeSim.

1) Equis - Metastock User Manual for Windows 95/98 & NT. This is the user manual that comes
with Metastock Version 7,8,9 or 10 and is a prerequisite for using Vitamin-C.

2) Equis - MetaStock Developers Kit User Manual

General Reading and References

The following references are ones that the author has read and recommend for general reading. This list is
by no means exhaustive.

C/C++ Programming and Language Reference

3) Stephen Prata - C++ Primer Plus

4) Jesse Liberty, Bradley Jones — Sams Teach Yourself C++ in 21 days.
5) Herbert Schildt — Teach Yourself C++

6) Stephen R. Davis — C++ for Dummies

7) John Hubbard — Programming with C++

8) Microsoft Publication — C for yourself

Online C/C++ References

cplusplus.com - http://www.cplusplus.com/

Cited TradeSim Documents

Note: These documents should be available if you have TradeSim installed on your
system but if any of these articles are missing they can be downloaded from the following
website location http://www.compuvision.com.au/Articles.htm

9) TradeSim User Manual
10) AN2 - Implementing Volatility Trailing Stops the Simple Way
11) TB2 - The Universal Text Trade Database File Format

General References on Trading

12) Alexander Elder — Trading for a Living

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 132
http://www.compuvision.com.au

http://www.cplusplus.com/
http://www.compuvision.com.au/DownloadTradeSim.htm

Vitamin-C for Metastock

Version 1.0.1

Copyright © 2000-2009 by Compuvision Australia Pty Ltd. All Rights Reserved Page 133
http://www.compuvision.com.au

	Contents
	Disclaimer
	Copyright and Licensing Agreement
	Trademarks

	Acknowledgements
	Vitamin-C Feature Summary
	Introduction
	The problem
	Why the MetaStock Formula Language has limitations.
	Trying to code simple systems using the MSFL

	How MetaStock Communicates with Vitamin-C
	Calling script files from your MetaStock code
	Anatomy of a Vitamin-C function call.
	Example of using CallScript with No User Array Arguments
	Examples of using CallScript with 1 User Array Arguments
	Example of using CallScript with 3 User Array Arguments

	Your First Step
	Coding simple systems using the ‘Vitamin-C’ langu
	Exercise

	A Closer look

	What happens if you make a mistake?
	Detecting coding errors before you run the code-script.
	Installing the Free Compiler on your system
	Running A Syntax Check

	Correcting coding errors at runtime
	Auto Save feature.

	A Brief Introduction to C++
	Predefined Variables and Functions
	
	Predefined Variables
	Vitamin-C specific functions
	Predefined Array Variables

	Your Second Step
	
	Exercise

	Your Third Step.
	Corollary
	Exercise

	Your Fourth Step
	Getting a little bit more serious !
	Coding a Time Stop
	Creating a MetaStock Time Stop Expert

	Building a simple Profit Stop Indicator Using Vitamin-C
	Spicing up the Profit Stop.
	Handling the Short side of the Market

	Building a Trailing Stop function with Vitamin-C
	The TradeSim Trailing Stop Function Description
	Trailing Stop Algorithm on the Long Side
	Trailing Stop Algorithm on the Short Side

	Running the Vitamin-C Trailing Stop code
	Exercise

	Implementing Moving Averages with Vitamin-C
	The Simple Moving Average (SMA)
	Improving the SMA

	The Exponential Moving Average

	Porting Code from other Charting Platforms to Vitamin-C
	Example 1: Adaptive Moving Average (AMA)
	Example 2: The Guppy Count back Line Trailing Stop Indicator

	Multi Dimensional basic arrays in Vitamin-C
	Basic Array Declarations
	Single Dimensional Arrays
	Examples

	Two Dimensional Arrays
	Examples

	Three Dimensional Arrays
	Examples

	N-Dimension Arrays
	Examples

	Using basic arrays in Vitamin-C
	2-D basic array example
	3-D basic array example

	Using the Standard ‘C’ library from Vitamin-C
	Transcendental Example
	File IO example

	Using Vitamin-C with TradeSim
	Method 1: Generating Entry and Exit Triggers using Vitamin-C
	Method 2: Creating a Text Trade Database.

	Using Vitamin-C with BullCharts

	Advanced Topics
	Using the Standard Template Library
	
	
	Example 1

	Appendix A
	A Brief Introduction to C/C++
	Adding Comments to your C-script
	What Is a Variable?
	Storing Data in Memory
	Allocating Storage for Variables
	Size of Variables
	Signed and Unsigned Integers
	Volatile and Non-Volatile storage

	Keywords
	Fundamental Variable Types
	Storage Classes
	Declaring Variables
	Case Sensitivity

	Typical Program Forms
	Statements
	Anatomy of a function.
	Program Flow Control
	Relational Expressions
	A common pitfall

	The if Statement
	The if…else Statement
	The if…else…if…else Statement
	Example 1
	Example 2

	The ?: Operator
	The switch Statement
	Example 1
	Example 2

	Logical Expressions
	The Logical OR Operator ||
	The Logical AND Operator &&
	The Logical NOT Operator !

	Loops
	The for-loop
	Example

	The while loop
	Example

	The do…while loop
	Example

	The break statement
	Example

	The continue statement

	Appendix B
	General Forms of CallScript
	
	CallScript (0 user array arguments)
	CallScript1 (1 user array arguments)
	CallScript2 (2 user array arguments)
	CallScript3 (3 user array arguments)
	CallScript4 (4 user array arguments)
	CallScript5 (5 user array arguments)
	CallScript6 (6 user array arguments)
	CallScript7 (7 user array arguments)

	Appendix C
	The Array Class Type
	Available Operators
	Array Member Functions
	Array Friend Functions

	Appendix D
	Installing the Free Borland C++ Compiler on your system

	Appendix E
	MetaStock Sample Indicator code
	
	Adaptive Moving Average
	Exponential Moving Average
	Simple Moving Average
	Guppy CBL
	2D-Array
	3D-Array
	STL string
	Sinewave
	If()
	Simple Moving Average
	Trailing Stop
	Time Stop
	Profit Stop

	Reference Literature
	General Reading and References
	C/C++ Programming and Language Reference
	Online C/C++ References
	Cited TradeSim Documents
	General References on Trading

